
A Task-Parallel Approach for Localized Topological Data Structures

Guoxi Liu , Student Member, IEEE, and Federico Iuricich , Member, IEEE

Abstract—Unstructured meshes are characterized by data points irregularly distributed in the Euclidian space. Due to the irregular
nature of these data, computing connectivity information between the mesh elements requires much more time and memory than
on uniformly distributed data. To lower storage costs, dynamic data structures have been proposed. These data structures compute
connectivity information on the fly and discard them when no longer needed. However, on-the-fly computation slows down algorithms
and results in a negative impact on the time performance. To address this issue, we propose a new task-parallel approach to proactively
compute mesh connectivity. Unlike previous approaches implementing data-parallel models, where all threads run the same type
of instructions, our task-parallel approach allows threads to run different functions. Specifically, some threads run the algorithm
of choice while other threads compute connectivity information before they are actually needed. The approach was implemented
in the new Accelerated Clustered TOPOlogical (ACTOPO) data structure, which can support any processing algorithm requiring
mesh connectivity information. Our experiments show that ACTOPO combines the benefits of state-of-the-art memory-efficient (TTK
CompactTriangulation) and time-efficient (TTK ExplicitTriangulation) topological data structures. It occupies a similar amount of
memory as TTK CompactTriangulation while providing up to 5x speedup. Moreover, it achieves comparable time performance as TTK
ExplicitTriangulation while using only half of the memory space.

Index Terms—Data structures, parallel computation, topological data analysis, simplicial complex

1 INTRODUCTION

The proliferation of high-resolution scanning devices is increasing
the availability and size of unstructured meshes in applications such
as computer graphics [14, 42, 59], material science [3, 58], medical
modeling [49, 51], environmental science [13, 32, 56], and autonomous
navigation [1, 34].

Despite their widespread adoption, processing and visualizing
unstructured meshes still represents a major bottleneck in the analysis
pipeline. With regular data, computing and storing the connectivity
of the mesh elements has a negligible cost since all information is
implicitly provided by the data regularity. With unstructured data,
instead, the same operation increases the memory footprint to the point
of saturating the available memory.

Dynamic data structures have been proposed [20, 40] to cope with
this problem by managing memory usage at runtime. The key idea
of these approaches is to compute connectivity information only for a
subset of the mesh at a time, discarding information when no longer
needed. This approach provided advantages for memory consumption,
but resulted in algorithms two to four times slower than state-of-the-art
data structures [40].

In this paper, we propose a new block-based task-parallel compu-
tation model to obtain data structures that are both time and memory
efficient. Block-based [20,40,55] indicates a data structure that executes
fine-grain operations locally (on subsets of the input mesh) rather than
processing the entire mesh at once. Task-parallel [36] indicates a data
structure integrating pipelined data computation and data consumption
tasks. The combination of these two characteristics allows the data
structure to self-organize resources at runtime, computing information
before they are needed for local data consumption and discarding
information when no longer needed.

The main contributions of this work include:

• A new task-parallel computation model for unstructured mesh
processing;

• A new data structure implementing the proposed model;

• Guoxi Liu and Federico Iuricich are with School of Computing, Clemson
University. E-mail: {guoxil | fiurici}@clemson.edu .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

• A comparison with state-of-the-art topological data structures on
a wide range of unstructured meshes and processing algorithms
(both sequential and parallel);

• An open-source integration of the proposed data structure in the
TTK framework [53].

2 BACKGROUND

In this section, we introduce the necessary background information for
topological data structures, including the notion of simplicial complex
and topological relation.

2.1 Simplicial complex

A k-simplex (or simplex of dimension k) is defined as the convex hull of
k + 1 linearly independent points in the Euclidean space. A 0-simplex
is also referred to as a point, a 1-simplex as an edge, a 2-simplex as a
triangle, and so on. Given a k-simplex σ , the convex hull of a nonempty
subset of size m + 1 of the k + 1 points (i.e., m < k) that defines an
m-simplex τ is called an m-face of σ , and σ is said to be a coface of τ .
The set of cofaces of a simplex σ forms the star of σ .

A simplicial complex Σ is a set of simplices such that every face of
a simplex σ is also in Σ, and the intersection of any two simplices σ
and τ is either a face of both or empty. A simplex that is not a proper
face of any other simplex in Σ is called top simplex. The dimension d
of Σ is equal to the largest dimension of any simplex in Σ.

2.2 Topological relations

Three types of topological relations describe the connectivity of the
simplices in a simplicial complex Σ. The boundary relation maps a
simplex to its faces, the coboundary relation maps a simplex to its
cofaces, and the adjacency relation maps a simplex to other simplexes
next to it. Suppose that two simplices σ and τ are in Σ, and σ is a face
of τ , we say that σ is on the boundary of τ , and similarly, τ is on the
coboundary of σ . Two k-simplices τ1 and τ2 are adjacent if and only if
they share a common (k − 1)-simplex σ , and two vertices are adjacent
if they are on the same edge.

In this paper, we focus on the topological relations between the
simplices of a tetrahedral mesh and use capital letters to indicate
whether the relation involves a vertex (V), edge (E), triangle (F), or
tetrahedron (T). Each topological relation is represented with a pair of
letters, e.g., FE relation denotes the edges on the boundary of a triangle.
For a tetrahedral mesh, there are six boundary relations (EV , FV , TV ,
FE, T E, T F), six coboundary relations (V E, V F , V T , EF , ET , FT),
and four adjacency relations (VV , EE, FF , T T).

https://orcid.org/0000-0002-8164-7185
https://orcid.org/0000-0003-1782-9715
mailto:reprints@ieee.org
mailto:fiurici}@clemson.edu

Figure 1 shows two example topological relations for a simple
tetrahedral mesh composed by two tetrahedra sharing a common
triangle face. Figure 1(a) shows the V E relation for the vertex v0, which
involves the edges e0, e1, e2, and e3 highlighted in red. Figure 1(b)
shows the FV relation for the triangle f0, which involves the vertices
v0, v1, and v2.

(a) (b)
Fig. 1: A simplicial complex composed by two tetrahedra sharing a
triangle face. (a) V E relation for vertex v0. (b) FV relation for triangle f0.

3 RELATED WORK

In this section, we review data structures designed for encoding
simplicial complexes, and we provide an overview of how parallel
computation is used for stuying the mesh topology.

3.1 Data structures for simplicial complexes

In this work we focus on data structures that allow the retrieval of
any topological relation in a mesh. A number of data structures
encode unstructured meshes without representing their connectivity
information. These are useful for specific tasks (e.g., ray tracing [54])
but are inadequate to support topological algorithms.

Data structures that provide access to topological relations can be
classified into two categories: static and dynamic.

Static data structures. The approach adopted by static data
structures is to compute and store topological relations at initialization
time. Differences among them are to be found in the types of relations
they encode.

The Incidence graph [18] is the most general static data structure for
simplicial complexes of arbitrary dimension, which explicitly encodes
all simplices and all boundary and coboundary relations. Given the
huge memory consumption it requires, several compact alternatives
have been developed to reduce its memory footprint [16, 17].

The Simplex tree [6] avoids encoding boundary relations by
organizing all simplices of Σ in a trie [4]. The result is a data structure
that can efficiently support the query of coboundary relations, but that
still has limited scalability when working with simplicial complexes in
high dimensions [20].

The Half-edge data structure [43] is a well-known data structure for
triangle meshes, which reduces the storage costs by only encoding the
topological relations involving edges. Half-faces [38] generalizes the
concept of the half-edge to polyhedral complexes.

Indexed data structures [39] provide a more compact option by
encoding only vertices, top simplices, and the boundary relation from
top simplices to their vertices. It contains sufficient information to
extract efficiently all the boundary relations of cells, but it requires
additional steps for coboundary or adjacency relations.

Several data structures have been developed to encode the connec-
tivity through adjacency relations. Examples include the Indexed data
structure with Adjacencies (IA data structure) [44, 47] and the Corner-
Table data structure [48] along with its several extensions specifically
proposed for triangle meshes [24, 41] and tetrahedral meshes [25].
The Generalized Indexed data structure with Adjacencies (IA* data
structure) [8] extends the IA data structure to non-manifold simplicial
complexes of arbitrary dimension. The IA* data structure has shown to
be most compact among static topological data structures, especially as
the dimension increases [7].

Dynamic data structures. Unlike static data structures, dynamic
data structures compute (and discard) topological relations during
runtime rather than at initialization time.

The PR-star octree [55] is considered the first dynamic topological
data structure. It supports the reconstruction of the connectivity
information of a simplicial complex by only encoding the list of
tetrahedra incident in each vertex. The data structure is capable of
extracting the boundary and coboundary relations locally to a subset of
the mesh by using a PR-Octree decomposition of the mesh vertices.

The Stellar tree data structure [20] generalizes the PR-star octree
to handle a broader class of complexes in arbitrary dimensions and is
the first concrete realization of the Stellar decomposition model [20].
The Stellar tree is shown to be more compact than most state-of-the-art
static data structures, requiring only a fraction of the memory space of
the latter [20].

The Stellar decomposition model has also been adopted by the
TopoCluster data structure [40], which enriches the Stellar decomposi-
tion with an implicit enumeration scheme for the mesh simplices. This
scheme provides an interface for the easy integration of TopoCluster
into any algorithm for topological data analysis. The easy and
general integration of TopoCluster was demonstrated by deploying
the data structure in the TTK framework [53], which allowed running
any algorithm implemented in the framework out-of-the-box while
drastically reducing the memory footprint.

3.2 Parallel computation for topological data analysis

Rather than focusing on the speedup provided by the underlying data
structure, some research work aimed at improving the performance
of specific topological algorithms. To this end, parallel computation
plays a major role in topology-based visualization [15, 31, 57]. While
certain routines are embarrassingly parallel by nature, (e.g., critical
points [2] or Forman gradient computation [47]), the extraction
of many topological abstractions requires the study of dedicated
parallel approaches. Notice that all the following methods have been
evaluated on regular grids where the dataset subdivision and topological
information are implicitly encoded.

Merge and contour trees. The contour forests algorithm [22]
presents a fast, shared memory multi-threaded computation of contour
trees on tetrahedral meshes. The approach partitions the domain first,
computes the local contour trees for each partition, and stitches the
resulting forest into the final augmented contour tree. Gueunet et al.
proposed a new approach based on Fibonacci heaps [23] that skips
the domain subdivision step by distributing the computations of the
merge tree arcs to independent tasks on the CPU cores. A pure data-
parallel algorithm with the support of GPU acceleration, Parallel Peak
Pruning (PPP) [10, 11], has been developed for computing both merge
and contour trees in unaugmented form using OpenMP for threading
and using Thrust for GPU. The PPP algorithm presents up to 70x
speedup compared to the serial sweep and merge algorithm supporting
the contour tree computation for arbitrary (topology) graphs [9]. In
contrast to building the global merge tree, the merge forest approach
[37] decomposes the domain, maintains the local merge trees connected
by a local reduced bridge set, and computes the necessary global
information only at query time. As a result, the merge forest represents
a localized data structure designed for answering queries related to
merge trees without expensive precomputation costs. This idea has
been generalized further for distributed environments [35].

Morse-Smale complex. Parallel algorithms for computing a 3D
Morse-Smale (MS) complex [30, 45] extend the divide-and-conquer
strategy presented by Gyulassy et al. [26]. The idea is to partition
data into blocks, compute the MS complex for the individual blocks,
and then merge the MS cells with a dedicated merge-and-simplify
routine. Many approaches have focused on the geometric accuracy
of the reconstructed model rather than the efficiency of the parallel
approach [5, 27–29]. An exception is the hybrid (CPU-GPU) shared-
memory algorithm proposed by Shivashankar et al. [50]. The algorithm
assigns embarrassingly parallel tasks such as gradient computation
and extreme traversals to the GPU, and thus results in substantial

speedup over CPU-based approaches. A pure GPU parallel algorithm
for computing the MS complex has also been developed recently [52],
which transforms the graph traversal operations into vector and matrix
operations that are better suited for GPU parallel computation.

4 TASK-PARALLEL COMPUTATION APPROACH

In this section, we describe our proposed task-parallel model. To clarify
the difference between our proposed model and existing approaches, we
first review common computation models used by static and dynamic
data structures.

Static data structures use a preprocessing approach, where topologi-
cal relations are computed in bulk during the initialization of the data
structure and then stored until the algorithm has been executed. As
shown in Fig. 2(a), thread t1 first computes the topological relations of
the entire mesh, and then uses them in the selected algorithm.

Fig. 2: (a) Workflow of typical static data structures. The thread computes
topological relations for the entire mesh first and then use them in the
algorithm. (b) Workflow of the traditional dynamic approach. The thread
works with one block at a time. It computes and uses the topological
relations in a sequential order. (c) Workflow of the proposed task-parallel
approach with two threads. One is only responsible for precomputing
topological relations, and the other executes the algorithm by using the
topological relations.

Dynamic data structures compute information on-the-fly by process-
ing one subset of the mesh at a time, which is achieved by dividing the
dataset into blocks [20, 40, 55]. In practice, the running thread accesses
one of the blocks, computes the required topological relations, and then
runs the algorithm inside the block. Fig. 2(b) shows an example of such
workflow executed by thread t1 that computes the topological relations
for the mesh subset b1, executes the algorithm locally on b1 using these
relations, and then moves to the next portion of the mesh b2 to repeat
the same process.

The goal of our task-parallel model is to avoid the switching between
algorithm execution and topological relations computation. Our model
still assumes that the input mesh is subdivided into blocks. However,
it introduces two types of threads, specialized in the computation
of topological relations and in the algorithm execution, respectively.
Fig. 2(c) shows an example of our proposed approach. Thread t1 is
created for running the processing algorithm, while thread t2 is used
for computing topological relations. In practice, thread t2 precomputes
topological relations for thread t1 so that, as long as topological
relations are provided, t1 keeps executing instructions from the selected
algorithm on each block.

The key difference in the execution of thread t1 is that the time
originally spent to compute topological relations in the traditional
approach (Fig. 2(b)) is now replaced by a waiting time (Fig. 2(c)) in
the new approach. The more efficient thread t2 computes topological
relations for t1, the shorter t1’s waiting time will be.

4.1 Consumers and producers

Our approach integrates a classic producer-consumer paradigm with
constrained consumers [33]. Threads that compute topological relations

are called producers. Threads that use these topological relations to run
a processing algorithm are called consumers.

Our model involves two types of producers. Worker producers are
unconstrained threads that can compute topological relations in any
block without a specific request. Leader producers are constrained
producers that compute topological relations only if specifically asked
by a consumer. Moreover, they manage the communication between
consumers and worker producers.

Fig. 3 shows the general workflow and communication strategy used
by these types of threads. In the following, we provide a detailed
description of the behavior of each thread type, assuming a sequential
algorithm is being executed (i.e., a single consumer thread is involved).

Fig. 3: The task-parallel producer-consumer paradigm. Orange, green,
and blue colors indicate the activities of the consumer, leader producer,
and worker producer threads, respectively.

Consumer. The consumer thread is the first thread to be spawned.
The consumer thread spawns the leader producer thread and runs
the selected processing algorithm that makes requests for topological
relations. Our model involves a buffer system that all threads can use
to store/retrieve topological relations (see Fig. 3). Assuming that a
topological relation R for a simplex σ is requested, the consumer first
identifies the block bi containing σ . Then, it searches the buffer to
verify if the relation R for the block bi has been computed. If yes, the
consumer keeps running the processing algorithm inside b. Otherwise,
the consumer stops its execution and invokes a request to the leader
producer.

Leader producer. The leader producer acts as a middle-layer be-
tween the consumer and the worker producers. During the initialization
phase, the leader producer creates the worker producers and starts
monitoring the consumer’s working block (i.e., on which block the
consumer is running the processing algorithm).

Every time the consumer requests a topological relation for a simplex
(e.g.,R(σ)) that is not stored in the buffer, the leader producer promptly
computes the relation R for the block bi containing the simplex σ
and notifies the consumer that the topological relation R(σ) is ready.
Then, the leader producer notifies the worker producers that topological
relations will be needed in the proximity of bi.

Worker producer. Similar to the leader producer, the task of
worker producers is to precompute topological relations in a block
and store them in the buffer. The difference is that worker producers
process blocks independently without an explicit request, unless they
are notified by the leader producer.

Worker producers are spawned by the leader producer and are
allocated to a block bi to compute topological relations. Worker and
leader producers share a variable indicating the index i of the block bi
where the consumer is working. Moreover, they share a second variable
indicating the index j of the last topological relation R j requested by

the consumer. These variables are controlled by a lock to prevent
multiple producers from computing the same topological relation on
the same block. Once a worker thread acquires the lock to access bi, it
modifies either bi or R j to the new value for next worker, releases the
lock, and then proceeds with computing the topological relation with
saved R j and bi before modification. This way, the next worker thread
that acquires the lock will not compute the same relation on the same
block (see Section 4.1.1 for details on how worker producers update
the block bi and topological relation index R j).

This workflow can only get interrupted by the leader producer at any
time, which will force all worker threads to move to bi by updating the
corresponding shared variable.

4.1.1 Computing new blocks for worker producers

After studying a wide range of processing algorithms, particularly
those related to topology-based visualization, we have recognized key
differences in their access patterns (the order in which they access
blocks) and the types of topological relations they request. To address
this diversity, we have defined multiple computing modes for worker
producers to experiment with different orders for visiting blocks and
the number of topological relations to compute. All computing modes
have been implemented and experimentally evaluated (see Section 6).

Moving directions. As discussed previously, worker producers
control the exclusive access to blocks through a shared variable. We
have defined two possible strategies that a worker thread can use to
update the variable.

The first strategy aims at precomputing relations for blocks with
the index following the block bi, i.e., the next block to compute is
Next(bi) = bi+1. The strategy is designed based on the fact that many
topology-based visualization algorithms loop through the simplices in
the mesh based on their indices. In most block-based data structures
[20, 40, 55], block indices follow the same order as the global indices
of simplices. We refer to this buffer strategy as linear buffer, which is
demonstrated in Fig. 4(a). Given the current block is b5, the worker
thread will precompute block b6, followed by b7, b8, and b9.

The second strategy aims at precomputing relations for all neighbors
of a block bi. We say two blocks are neighbors if they share a
common tetrahedron. This strategy is motivated by the fact that certain
algorithms (e.g. Morse-Smale computation [19]) visit simplices based
on their connectivity rather than their indexing. These algorithms
visit neighboring blocks in an unpredictable order which motivates the
precomputation of all blocks surrounding the current one. We refer
to this buffer strategy as spatial buffer. Fig. 4(b) shows an example
of the moving direction in the spatial order. Since the neighbor set of
the current block b5 is Neighbors(b5) = {b1,b2,b3,b4,b6,b7,b8,b9},
after b5 is computed, the worker thread will start visiting blocks in
Neighbors(b5), e.g., b1.

(a) (b)
Fig. 4: Different moving directions (in green color) of worker producers
for block b5: (a) linear order, (b) spatial order.

Topological relations. After moving to a new block bi, the worker
producer will compute topological relations R for the simplices in
bi. At this point, the worker thread has two options, and the most
straightforward one is to compute only the topological relation R
specified in the last consumer’s request. In this case, the worker

producer will update the block index once finished (based on the moving
direction mentioned earlier) while leaving the topological relation index
R j untouched.

However, we observed that processing algorithms rarely use only one
topological relation at a time. Instead, multiple topological relations are
usually requested for the same block or for the same simplex. Therefore,
an alternative approach for the worker producer is to compute all types
of topological relations used by the algorithm when accessing a new
block. In this case, each worker producer will update the relation index
R j to indicate that more topological relations need to be extracted in
this block. Once all topological relations are precomputed, the last
worker thread accessing the block will increment the block index bi,
according to the specified moving direction.

5 THE ACTOPO DATA STRUCTURE

Using the task-parallel framework described in Sec. 4, we implement
a new data structure called Accelerated Clustered TOPOlogical
(ACTOPO) data structure. In the remainder of this section, we describe
the encodings of ACTOPO and the implementation choices made to
integrate consumer, leader producer, and worker producer threads in
the data structure.

5.1 Encodings of static information

The static information encoded by ACTOPO comprises the repre-
sentation of the input unstructured mesh and additional information
computed at initialization time. In the following, we assume that the
input is a tetrahedral mesh that has already been subdivided into blocks.
However, the same approach could be used to encode meshes defined
by general polytopes.

Input. The input tetrahedral mesh contains only information for
vertices and tetrahedra. An indexed list V stores the coordinate values
of each vertex. An indexed list T stores the vertices forming each
tetrahedron (TV relation).

The data structure also assumes a subdivision of the mesh is defined
based on the mesh vertices and is also provided in the input. Vertices
with the same label belong to the same block. An indexed list I is used
to encode the block that each vertex belongs to. It is a requirement of
the subdivision that each vertex is contained in exactly one block.

Fig. 5 shows an example of the encodings of an input mesh. The
example tetrahedral mesh shows that v0 and v1 belong to the same
block (i.e., I[v0] = I[v1] = b1), while the remaining vertices are in the
block b2 (i.e., I[v2] = I[v3] = I[v4] = I[v5] = 2).

Based on the subdivsion of the mesh vertices we can create an
association between a simplex σ and a block bi. Specifically, we say
that a simplex σ is internal to the block bi iff. the vertex v of σ with the
lowest index also belongs to bi and is external to all other intersecting
blocks.

Fig. 5: The input mesh that includes the vertex list V , tetrahedron list T ,
and a subdivision I.

Initialization. In addition to the input mesh, the data structure
computes and stores the boundary relations of each simplex σ with its
vertices. Since this information is not provided for edges and triangles
(i.e., EV , FV), these relations are computed during the initialization
phase.

The extraction is performed by iterating through the tetrahedra in
each block. For each tetrahedron, all possible combinations of two

vertices (EV relation) and three vertices (FV relation) are collected
and stored in an indexed list after removing duplicates. Fig. 6 shows
the additional information encoded by the data structure after the
initialization. Two indexed lists E and F are used to store the edges and
triangles globally. For each block bi, we also encode a list of external
tetrahedra Tex.

Fig. 6: Encodings of ACTOPO after initialization, which include edge list
E, triangle list F , external tetrahedra list Tex, and interval arrays for edges
and triangles SE and SF .

In addition, the data structure maintains an interval array for edges
and triangles, SE and SF respectively, indicating the largest edge and
triangle indices contained in each block. These arrays are used to get
local edges and triangles of a block from the global edge and triangle
lists E and F .

5.2 Operations supported at runtime

As mentioned earlier in Sec. 4.1, every time the algorithm requires a
topological relation of a simplex σ , the consumer will first locate the
block bi containing σ . This step requires constant time, as bi = I(v)
for a vertex v = σ and bi = minv∈σ I(v) for any other simplex σ .

The buffer system is implemented using a linked list that stores the
index i of each precomputed block bi. While the linked list ensures fast
insertion and deletion operations, a supplemental hash table of block
indices is used for quick lookup. Therefore, it just takes constant time
for the consumer thread to check whether a block bi is available in the
buffer. From the consumer thread’s perspective, the buffer works like a
black box. This feature makes the model universally applicable to any
topological algorithm.

While the consumer thread can only read data from the buffer, the
leader producer is the thread that actually manages the buffer. The
buffer system in ACTOPO operates on a First-In-First-Out (FIFO)
order, and an additional integer value caps the maximum number of
blocks allowed in the buffer. Before notifying worker producers, the
leader producer checks the free space remaining in the buffer. If the
buffer is at capacity, the leader producer cleans up half of the buffer
based on the chronological order in which blocks were added.

It is worth noting that the computation of a local topological relation
R within a block bi is not different from the approach used by other
dynamic data structures [20, 40]. Typically, this involves iterating
through internal, and sometimes external, tetrahedron list of bi, and
constructing the simplices of interest from vertices of the tetrahedron
(e.g, a pair of vertices can form an edge). Due to the limited space
available, we report the pseudocode used to extract a representative set
of these operations in supplemental materials.

6 EVALUATION OF PERFORMANCE

In this section, we present an experimental evaluation of our proposed
data structure when used in combination with sequential algorithms.
All experiments are performed on a desktop computer equipped with a
3.2 GHz Intel i7-8700 CPU and 32 gigabytes of RAM. We report the
average values obtained over 10 runs for each experiment.

6.1 Experimental setup

The tetrahedral meshes selected for the performance analysis are listed
in Tab. 1. Datasets Shapes and Hole are irregular tetrahedral meshes.
The remaining datasets (i.e., Red Sea, Engine, Earthquake, Foot,
Asteroid, and Stent) are tetrahedral meshes created by tetrahedralizing

volume images while filtering out elements corresponding to empty
parts of the original data domain.

Table 1: Overview of the experimental datasets, including the number of
vertices |V |, edges |E|, triangles |F |, and tetrahedra |T |. The type field
indicates whether the dataset was originally a volume image (Regular)
or points are irregularly distributed within the domain (Irregular).

Dataset Type |V | |E| |F | |T |
Red sea Regular 0.95M 6.33M 10.58M 5.20M
Engine Regular 1.39M 9.14M 15.18M 7.43M
Earthquake Regular 1.62M 11.14M 18.92M 9.41M
Foot Regular 4.60M 30.79M 51.51M 25.32M
Asteroid Regular 5.07M 35.00M 59.58M 29.65M
Shapes Irregular 7.87M 52.37M 87.63M 43.13M
Hole Irregular 9.26M 63.70M 108.29M 53.85M
Stent Regular 17.37M 118.79M 201.40M 99.98M

ACTOPO has been implemented as a new module of the Topology
Toolkit (TTK version 1.1.0), and thus all plugins implemented in
TTK can run seamlessly using the new data structure. We used four
different TTK plugins to evaluate the performance under different
runtime conditions.
TestTopoRelations plugin is a plugin developed in-house for

profiling the data structure under simplified conditions. The plugin
iterates over the simplices of the mesh starting from the vertices and
successively moving to edges, triangles, and tetrahedra. For each
simplex σ the plugin requires the computation of every boundary and
coboundary relation involving σ . The plugin traverses the tetrahedral
mesh following the linear order of simplex indices, i.e., from σ0 to σn,
where σ denotes a k-simplex in the tetrahedral mesh and n is the total
number of k-simplices in the mesh. It is selected to test the performance
of the topological data structure in computing topological relations
one at a time and to avoid recomputation for localized topological
data structures since the topological relations of a block will only be
requested once.
ScalarFieldCriticalPoints plugin is used to compute critical

points based on an input scalar function. The plugin requires
topological relations involving the vertices (i.e., VV , V F , and V T). The
only exception is the FT relation, which is used to identify the list of
vertices on the boundary of the mesh. The plugin traverses the vertices
of the mesh in the same linear order as TestTopoRelations plugin,
and then marks vertices that are on the boundary of the mesh. However,
the plugin requires multiple topological relations to be computed when
visiting one block instead of only one relation as in the previous testing
plugin.
DiscreteGradient plugin [21] computes a discrete Morse gra-

dient field based on an input function. The function F is a discrete
Morse function if for any p-simplex σ , all the (p − 1)-simplices on
its boundary have a lower F value and all the (p + 1)-simplices on
its coboundary have a higher F value, with at most one exception.
If such exception exists, it defines a pair of cells called a discrete
gradient vector. Otherwise, p-simplex σ is a critical simplex of index
p. Intuitively, a discrete vector field can be viewed as a collection
of arrows, connecting a p-simplex of mesh Σ to an incident (p + 1)-
simplex in such a way that each simplex is a head, or a tail of at most
one arrow and the critical simplices are neither the head nor the tail of
any arrow. The plugin iterates all the 0-simplices (i.e., vertices), and
for each vertex, it adds all k-simplices (k > 0) in the lower star of the
vertex into a list. If the list is not empty, the plugin finds the pairable
1-simplex (i.e., edge) for the vertex, 2-simplices (i.e., triangles) for the
remaining 1-simplices, and so on. Multiple topological relations are
used when computing the discrete gradient vector, specifically, V E,
V F , V T , EF , ET , FE, FT , and T F relations. Even though the plugin
visits vertices sequentially, a simplex can be the face/coface of multiple
simplices, and the recomputation of its topological relations will be
requested multiple times during the process.
MorseSmaleComplex plugin [50] computes a Morse-Smale (MS)

complex from an input scalar function on the given tetrahedral
mesh. An integral line is a path on the mesh that is tangent to the

gradient of the function everywhere. Intuitively, the MS complex is a
segmentation of the input scalar field in regions where integral lines
are connected to the same pair of critical points. The plugin first
computes the discrete gradient on the tetrahedral mesh as described
in the DiscreteGradient plugin, and the remaining steps require
to visit the mesh based on the discrete gradient vector, including the
computation of 1-separatrices, saddle connectors, and segmentation.
The order in which simplices are visited is defined at runtime. For this
reason, this plugin denotes the worst-case scenario of the localized
data structure, as recomputation of one same block could happen
multiple times during the process. Since the first step of the plugin is
overlapped with the previous DiscreteGradient plugin, we measure
its performance by only counting the steps after the discrete gradient
computation.

6.2 Evaluating robustness on sequential algorithms

In this section, we test how robust the proposed approach is when
varying the model’s parameters, namely, the four different computing
modes and the total number of producers. For each execution, we
track the amount of time to finish the algorithm execution and the
peak memory usage observed during the process. Notice that the
execution time of the plugin includes the waiting time of the consumer
(i.e., time spent waiting for a topological relation to be ready) and
algorithm execution time (i.e., time spent executing the algorithm’s
instructions). Since parameter changes in the data structure do not affect
the algorithm, a reduction in the overall execution time is attributed to
a reduction in the waiting time.

6.2.1 Comparison of computing modes for worker producers

The working modes described in Sec. 4.1.1 generate four possible
configurations for the worker producers. Producers can visit blocks
either linearly or following a spatial order. Moreover, at each
request, producers can either compute the requested topological
relation or all topological relations predefined by the algorithm.
Our hypothesis is that each mode may be preferable based on the
algorithm’s characteristics. Specifically, the linear computing mode
should benefit plugins that iterate through simplices in sequential
order, i.e., TestTopoRelations, ScalarFieldCriticalPoints,
and DiscreteGradient plugins. The spatial computing mode should
be beneficial for plugins that visit simplices with an unpredictable order
(e.g., MorseSmaleComplex plugin). In the following experiments,
we focus on the computing mode and test these hypotheses using 6
producers in total (i.e., 1 leader producer and 5 worker producers).

Fig. 7 shows the results obtained on three plugins where the linear
buffer was expected to provide the best performance.

For TestTopoRelations plugin (Fig. 7(a)), we can notice that the
topological relation computation makes the real difference. While the
linear buffer provides a small benefit compared to the spatial buffer,
computing only the required topological relation provides a 5.2 times
speedup compared to computing all topological relations used by the
algorithm.

The opposite is true for ScalarfieldCriticalPoints (Fig. 7(b))
and DiscreteGradient plugins (Fig. 7(c)). Although differences
across modalities are less pronounced, computing all listed topological
relations using the linear buffer results in algorithms running 14%
faster. This is reasonable since the plugin uses multiple relations for
each vertex at a time. Not surprisingly, precomputing only one single
topological relation also works better for the MorseSmaleComplex
plugin (Fig. 8(a)). Unlike the other two plugins, this plugin utilizes
topological relations to reconstruct Morse-Smale cells while navigating
the entire mesh. Due to the navigation process only focusing on one
topological relation at a time, the single mode is beneficial. Moreover,
the spatial buffer provides slightly better performance than the linear
one. This is because the computation of the MS complex follows the
path according to a discrete gradient field and does not always visit
blocks in a linear order. The spatial buffer precomputing a single
relation is 85% faster on average.

Memory usage does not change significantly across modalities. As
we can expect, the work modes precomputing multiple relations use

more space compared to those precomputing only one relation, up to
18% as observed in our experiments. Overall memory usage grows
linearly with the number of tetrahedra in the input mesh. We include
detailed graphs in the additional materials only. The only exception is
the MorseSmaleComplex plugin (Fig. 8). For this plugin, we can also
notice that the time and memory do not increase consistently as the size
of datasets increases; this is because extracting the MS cells depends
on the size of the MS complex instead of the input mesh (i.e., output-
sensitive). Still, computing multiple relations for each block requires
about 12% more memory space than computing a single relation.

Lessons learned. Overall, the results match our hypothesis.
Specifically, the computing mode of linear buffer with the single
relation works best for TestTopoRelations plugin, the mode of linear
buffer with all required relations performs best for ScalarField-
CriticalPoints and DiscreteGradient plugins, and the mode of
spatial buffer with single relation is optimal for MorseSmaleComplex
plugin. Furthermore, using a spatial buffer with computing all required
relations is not optimal for any of the testing plugins.

6.2.2 Comparison of different numbers of producers

The number of producer threads is another parameter that affects
performance. Our hypothesis is that more producer threads should
accelerate the execution of the plugin by reducing the waiting time of
the consumer thread. For the following experiments, we adopted the
best computing mode for each plugin, as observed in Sec. 6.2.1, while
changing the number of producer threads from 1 to 10. Given that
the same computing mode and buffer capacity are used, differences in
memory costs are very limited (with a maximum increase of 16% for
DiscreteGradient plugin and less than 1% for all others). Therefore,
we only discuss time performance in the following, while providing
detailed graphs in supplemental materials.

Fig. 9 shows the time performance of all four tested plugins. For all
of them, we can notice that using more producers reduces the waiting
time of the consumer thread. For all plugins, except the MorseSmale-
Complex plugin and ScalarFieldCriticalPoints plugin on the
Stent dataset, the waiting time disappears after using 6 producers
(as indicated by the cyan colored bar in the figure). Overall, the
speedup plateaus at around 6 producers, after which producers will
end up competing with the consumer for computing resource (i.e.,
which thread to be scheduled), and the context switching adds
overhead to the performance. Using 6 threads results in a 4.2 times
speedup if we consider the extraction of topological relations only
(TestTopoRelations), and about 1.7 times speedup for all remaining
plugins.

Lessons learned. Overall, the results show that multiple producer
threads can improve the time performance of the plugin, but such
speedup is limited. For most testing plugins, using 4 producer threads
shows significant improvements over the single producer. However,
configuring the number of producer threads to exceed the number of
physical cores will result in performance degradation. This is expected
due to issues such as operating system’s scheduling policy, context
switching, and critical resource competition.

6.3 Comparing with state-of-the-art
In this section, we compare our proposed data structure with state-of-
the-art static and dynamic data structures. For static data structure, we
use ExplicitTriangulation implemented in TTK. This data structure
precomputes and stores all required topological relations during a pre-
processing stage so that they are readily available during the algorithm
execution. For dynamic data structure, we use CompactTriangulation,
an implementation of the dynamic data structure proposed by Liu et
al. [40]. Similar to ACTOPO, CompactTriangulation organizes the
mesh using blocks, computes and discards topological relations locally
to each block.

The comparison is intended to evaluate the parallelism at the data
structure level instead of the algorithm level. For this reason, the
testing algorithms are restricted to the sequential execution. In practice,
multiple threads are used for initializing the data structures or, in the
case of ACTOPO, threads are used for supporting the extraction of

TestTopoRelations ScalarFieldCriticalPoints DiscreteGradient

(a) (b) (c)

Fig. 7: The execution time (in seconds) used by TestTopoRelations, ScalarfieldCriticalPoints, and DiscreteGradient plugins when running
with different computing modes using six producer threads.

(a) (b)
Fig. 8: The execution time (in seconds) and memory usage (in
megabytes) used by MorseSmaleComplex plugin when running with
different computing modes.

(a) TestTopoRelations (b) ScalarFieldCriticalPoints

(c) DiscreteGradient (d) MorseSmaleComplex
Fig. 9: The total time (in seconds) spent by four testing plugins when
running with different numbers of producer threads, and the cyan colored
bar denotes the waiting time of the consumer thread.

topological relations (6 producers). Instructions implemented by each
plugin are executed by a single thread (1 consumer for ACTOPO) in a
sequential manner.

Since the initialization of each data structure is different, we report
detailed results about the preprocessing time (steps required to initialize
the data structure) and the algorithm execution time. For the following
experiments, we have set the number of threads to 6 for all data
structures and limited the buffer/cache capacity to 20% of the total
number of blocks for both our proposed data structure and TTK
CompactTriangulation.

Fig. 10 shows the total time and memory consumptions obtained
with three linear plugins. Focusing on the preprocessing step, we
notice that our proposed data structure is the second best on average in
terms of time performance. ExplicitTriangulation is the slowest being
in general, 2 times as slow as ACTOPO, and CompactTriangulation
is 4 times as fast as ACTOPO. For the TestTopoRelations plugin
(Fig. 10(a)), CompactTriangulation shows the worst performance
instead, underlying the limitation of computing topological relations on-
the-fly while the algorithm is blocked to wait. Our approach provides a
dramatic improvement and is 5.3 times as fast as CompactTriangulation.

In the remaining two plugins (Fig. 10(c) and (e)), topological
relations are used for computing additional information. Producer
threads used in our approach have enough time to precompute
topological relations and save time for the consumer. This allows

ACTOPO to close the gap with ExplicitTriangulation and to show
roughly the similar performance. The difference with CompactTri-
angulation is still significant, since ACTOPO is 3.4 times as fast as
CompactTriangulation for ScalarFieldCriticalPoints plugin and
1.83 times for DiscreteGradient plugin.

In terms of memory usage, even if CompactTriangulation is the
most compact data structure in general, ACTOPO shows a very similar
memory footprint using only 7% more memory on average. As opposed,
ExplitTriangulation uses about 3 times the memory of our proposed data
structure. The large memory requirement causes ExplicitTriangulation
to run out of memory when processing the Stent dataset with Test-
TopoRelations plugin.

Particular attention is dedicated to the results collected on the
MorseSmaleComplex plugin, shown in Fig. 11. Since the plugin does
not simply iterate through the simplices of the mesh, block-based
data structures like CompactTriangulation are forced to recompute
topological relations inside a block multiple times with an evident
loss in performance, especially when handling the input dataset with
a complicated scalar field, such as Engine, Earthquake, and Foot
datasets. ACTOPO provides a considerable improvement being 3
times as fast as CompactTriangulation. However, the unpredictable
pattern used by the plugin to access blocks makes it harder for the
producers to predict which block the consumer will move to next. As a
result, the gap between ACTOPO and ExplicitTriangulation is wider
with ACTOPO being 2.6 times as slow as ExplicitTriangulation on
average. Nevertheless, this is paid off by much better scalability in
terms of memory usage, with ACTOPO being 1.8 times as compact
as ExplicitTriangulation. As mentioned earlier, the plugin is output-
sensitive, which causes both localized data structures to use the most
memory when processing the Foot dataset.

7 SUPPORTING PARALLEL ALGORITHMS

Parallel computation makes use of multiple processors to execute
computational tasks simultaneously, thus reducing the total time
required to complete the task. Various topology-based visualization
algorithms have implemented different parallel computation techniques,
and one common approach is the data-parallel technique. In this
method, data is divided into smaller pieces and processed independently
by multiple threads. In this section, we describe how ACTOPO supports
a parallel topological algorithm.

For static data structures, data-parallel techniques are used to
parallelize the computation of topological relations, or the selected
algorithm, independently. For dynamic data structures, data-parallel
techniques are used to allow multiple threads to process multiple blocks
at the same time [40].

Our proposed ACTOPO data structure can also be adapted to execute
parallel algorithms. As mentioned previously, the consumer thread is
the one responsible for running the processing algorithm. When an
algorithm allows for parallel execution, multiple consumer threads can
be used to run instructions in parallel. To this end, we have generalized
our model by duplicating producer-consumer associations.

Consumer threads are spawned at the initialization phase of the
ACTOPO. Once created, each consumer thread has its own set of

TestTopoRelations ScalarFieldCriticalPoints DiscreteGradient

(a) (c) (e)

(b) (d) (f)

Fig. 10: The total time (in seconds) and memory usage (in megabytes) used by three experimental plugins with different data structures: ACTOPO,
TTK Compact Triangulation, and TTK Explicit Triangulation when the algorithm runs in sequential. In (a), (c), and (e), the top bar indicates the time
required by running the algorithm, while the bottom bar indicates the preprocessing time.

(a) (b)
Fig. 11: The total time (in seconds) and memory usage (in megabytes)
used by MorseSmaleComplex plugin when running with different data
structures: ACTOPO, TTK Compact Triangulation, and TTK Explicit
Triangulation.

producers and a dedicated buffer system that is not shared with any
other consumer/producer threads. Each type of thread behaves in the
same way as described in Sec. 5, i.e., the consumer thread is responsible
for the algorithm execution, the worker producer threads precompute
topological relations and saves them to the buffer storage, and the leader
producer thread monitors both threads and manages the buffer system.
The only difference is the exclusive association between consumers
and producers.

In the following, we present an evaluation of this producer-consumer
paradigm when the topological algorithm runs in parallel. We keep only
three of the four TTK plugins originally selected since MorseSmale-
Complex uses parallelism only for computing the discrete gradient
(equivalent to the DiscreteGradient plugin), while the extraction of
the MS cells is done in a sequential manner.

7.1 Evaluating robustness on parallel algorithms

When working with a parallel algorithm, the total number of consumer
and producer threads involved is an important parameter to evaluate.
The total number of threads used by ACTOPO is tc + tc · tpc, where tc
indicates the number of consumer threads, tpc indicates the number of
producer threads per consumer thread, including one leader producer
and (tpc − 1) worker producers. Thus, each plugin can obtain a relative
speedup by either increasing tc to distribute the computation across
more consumer threads, or by increasing tpc to let more worker threads
precompute topological relations. Since our testing machine can
support at most 12 threads, we can use at least 2 consumers with
5 producers each (i.e., tc = 2 and tpc = 5), and at most 6 consumers
with 1 (leader) producer assigned to each one of them (i.e., tc = 6 and
tpc = 1).

Fig. 12 shows the total time and peak memory tracked for three
testing plugins. We also reuse the results obtained with a single
consumer thread (sequential computation) in Sec. 6.2.2 as a reference.

In general, using the maximum number of consumer threads achieves
the best time performance. Since the memory usages are at a similar
level (within 3% difference) except the DiscreteGradient plugin
(within 10% difference), we only discuss the time performance here
and shared the detailed figures in supplemental materials.

The TestTopoRelations plugin only extracts the topological
relations from the mesh without computing any additional information,
the precomputation from five producer threads helps speed up the
execution, but it is still on average 5% slower than fully distributing the
task to consumers. With one more consumer thread, it is 1.7 times as
fast as the single consumer thread.

The ScalarFieldCriticalPoints and DiscreteGradient plu-
gins show the advantage of maximizing the number of consumer threads
over other cases, and it is on average 2.4 times as fast as maximizing
the number of producer threads for both plugins.

Lessons learned. If the parallel processing algorithm is intensive
with topological relations, i.e., the use of topological relations is
faster than the production, both maximizing the consumer and
producer threads will speed up the execution. Otherwise, it is
preferred to increase the number of consumer threads to distribute
the workload instead of increasing the number of producer threads for
precomputation. Even though more work producers can reduce the
waiting time of the consumer, more consumer threads can make the
algorithm proceed in parallel and thus reduce the total time spent by
the algorithm.

7.2 Comparing with state-of-the-art

In this section, we repeat our comparison with CompacTriangulation
and ExplicitTriangulation data structures, allowing testing plugins to
run in parallel. In the following experiments, all data structures use 12
threads for their initialization (preprocessing). CompacTriangulation
and ExplicitTriangulation use 12 threads to run the requested algorithm.
Our data structure uses 6 consumer threads supported by 1 leader
producer each (i.e., tc = 6 and tpc = 1).

Fig. 13 shows the total time and peak memory consumption. Notice
that all algorithms are parallelized in a way that is agnostic to data
structures (using OpenMP [12]). Specifically, for loops that iterate over
simplices are split and distributed across threads. This is a challenge for
block-based data structures like CompacTriangulation and ACTOPO.
Suppose that the simplices indexed by a block are distributed between
two threads, topological relations of that block will be computed and
stored by each thread.

The resulting loss of performance is clearly visible in the results
of TestTopoRelations (Fig. 13(a)), where ACTOPO is about 1.2

TestTopoRelations ScalarFieldCriticalPoints DiscreteGradient

(a) (b) (c)

Fig. 12: The total time (in seconds) used by three experimental plugins with different numbers of consumer and producer threads when the algorithm
runs in parallel with OpenMP.

TestTopoRelations ScalarFieldCriticalPoints DiscreteGradient

(a) (b) (c)

Fig. 13: The total time (in seconds) used by three experimental plugins with different data structures: ACTOPO, TTK Compact Triangulation, and
TTK Explicit Triangulation when the algorithm runs in parallel with OpenMP. The top bar indicates the time required by running the algorithm, while
the bottom bar indicates the preprocessing time.

times as fast as CompactTriangulation but 2.5 times as slow as Explicit-
Triangulation. However, this testing plugin already demonstrates the
key advantage of block-based data structures, which is to speed up the
preprocessing stage. During this step, ExplicitTriangulation is about
2.5 times as slow as ACTOPO. This advantage becomes fundamental
depending on the topological relations required by the algorithm. For
real plugins (see Fig. 13(b) and (c)), Explicit Triangulation is always
the slowest data structure, being 4.8 times as slow as ACTOPO at the
preprocessing stage and requires 1.6 times to complete the execution
on average.

ACTOPO is generally the fastest data structure performing on par
with CompactTriangulation. Exceptions are the Foot and Stent dataset,
where CompactTriangulation performs sensibly worse than ACTOPO.
This is because these two datasets contain many more critical points
than other datasets, and CompactTriangulation is slower in computing
boundary vertices than our data structure, as it needs to recompute
triangle list for the same block multiple times while ACTOPO already
has those information encoded at initialization time.

This is an impressive result if we consider that, with ACTOPO, the
algorithm’s instructions are executed by half the number of threads
(6 instead of 12). This demonstrates the advantage that a task-
parallel data structure can provide for unstructured mesh processing,
leading to competitive time performance and efficient memory usage.
ACTOPO constantly performs on par with CompactTriangulation
using only 2% more memory for ScalarFieldCriticalPoints and
TestTopoRelations, and 8% less memory for DiscreteGradient.
Notably, both data structures are at least 2 times as compact as
ExplicitTriangulation. Given that using parallel algorithm has very
limited effects on the peak memory usage, we provide detailed figures
in supplemental materials.

8 CONCLUSION

In this paper, we present a new block-based task-parallel approach that
integrates a producer-consumer paradigm to improve data structures’
performance. A concrete implementation of this approach, called
Accelerated Clustered Topological (ACTOPO) data structure, was
also introduced and evaluated. In our experimental evaluation, we
test ACTOPO in two different scenarios. With sequential algorithms,

ACTOPO provides a substantial speedup compared to state-of-the-art
block-based data structures (TopoCluster [40]). It provides timings
comparable to static data structures (ExplicitTriangulation [53]), using
only half the memory. With parallel algorithms, ACTOPO maintains its
compactness while providing the best time performance in most cases,
when compared to other data structures.

Limitations. The main limitation of ACTOPO is the spatial
buffer. Our evaluation has shown that this type of buffer does not
allow to completely eliminate the waiting time of the consumer
thread when running the MorseSmaleComplex plugin. Although
the implementation of spatial buffer helps reduce the overall waiting
time compared to the linear order, ACTOPO still faces difficulties in
handling a processing algorithm exhibiting non-linear access patterns.

The main objective of ACTOPO is to provide an algorithm-agnostic
interface for mesh processing. One possible direction for our future
work is to explore learning-based methods to guide the producers in
selecting the blocks to precompute. This may further reduce the waiting
time for the consumer thread and result in faster algorithm execution.
Another direction is to refine the block-based task-parallel model for
specific algorithms. This will allow the development of new buffering
strategies tailored to an algorithm’s access patterns.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
b3d6k/, released under a CC BY 4.0 license. In particular, they include
(1) Excel files containing the results obtained during experiments, (2)
pseudocode for computing a representative set of localized topological
relations with ACTOPO, and (3) figure images geenrated from the
result data. The source code of ACTOPO data structure, including the
plugins we used during the experiments, can be found at the same URL,
released under BSD License.

ACKNOWLEDGMENTS

The authors would like to thank Philips Research, Hamburg, Germany,
for the Foot dataset, General Electric for the Engine dataset, and
Michael Meißner, Viatronix Inc. for the Stent dataset. The Red sea
dataset is courtesy of the Red Sea Modeling and Prediction Group

https://osf.io/b3d6k/
https://osf.io/b3d6k/

(PI Prof. Ibrahim Hoteit). The Earthquake and Asteroid datasets
are kindly shared by Mathieu Pont [46]. The remaining tetrahedral
meshes (Shapes, and Hole) are courtesy of Yixin Hu from New York
University.

REFERENCES

[1] H. Azpúrua, M. F. M. Campos, and D. G. Macharet. Three-dimensional
terrain aware autonomous exploration for subterranean and confined
spaces. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2443–2449. IEEE, Xi’an, China, 2021. doi: 10.
1109/ICRA48506.2021.9561099 1

[2] T. F. Banchoff. Critical points and curvature for embedded polyhedral
surfaces. The American Mathematical Monthly, 77(5):475–485, 1970. doi:
10.1080/00029890.1970.11992523 2

[3] X. Bao, N. Karthikeyan, U. D. Schiller, and F. Iuricich. Application-
oriented analysis of material interface reconstruction algorithms in
time-varying Bijel simulations. In EuroVis 2022 - Short Papers. The
Eurographics Association, Rome, Italy, 2022. doi: 10.2312/evs.20221104
1

[4] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching
strings. In Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’97, pp. 360–369. Society for Industrial and
Applied Mathematics, New Orleans, LA, USA, Jan. 1997. 2

[5] H. Bhatia, A. Gyulassy, V. Lordi, J. Pask, V. Pascucci, and P.-T. Bremer.
TopoMS : Comprehensive topological exploration for molecular and
condensed-matter systems: Comprehensive topological exploration for
molecular and condensed-matter systems. Journal of Computational
Chemistry, 39:936–952, Mar. 2018. doi: 10.1002/jcc.25181 2

[6] J.-D. Boissonnat and C. Maria. The Simplex tree: An efficient data
structure for general simplicial complexes. Algorithmica, 70(3):406–427,
2014. doi: 10.1007/s00453-014-9887-3 2

[7] D. Canino and L. De Floriani. Representing simplicial complexes with
Mangroves. In Proceedings of the 22nd International Meshing Roundtable,
pp. 465–483. Springer, 2014. doi: 10.1007/978-3-319-02335-9_26 2

[8] D. Canino, L. De Floriani, and K. Weiss. IA∗: An adjacency-based
representation for non-manifold simplicial shapes in arbitrary dimensions.
Computers & Graphics, 35(3):747–753, 2011. doi: 10.1016/j.cag.2011.
03.009 2

[9] H. A. Carr, O. Rübel, and G. H. Weber. Distributed hierarchical contour
trees. In 2022 IEEE 12th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 1–10. IEEE, Oklahoma City, OK, USA, 2022.
doi: 10.1109/LDAV57265.2022.9966394 2

[10] H. A. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak
pruning for scalable SMP contour tree computation. In 2016 IEEE 6th
Symposium on Large Data Analysis and Visualization (LDAV), pp. 75–84.
IEEE, Baltimore, MD, USA, 2016. doi: 10.1109/LDAV.2016.7874312 2

[11] H. A. Carr, G. H. Weber, C. M. Sewell, O. Rübel, P. Fasel, and J. P. Ahrens.
Scalable contour tree computation by data parallel peak pruning. IEEE
Transactions on Visualization and Computer Graphics, 27(4):2437–2454,
2021. doi: 10.1109/TVCG.2019.2948616 2

[12] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon.
Parallel Programming in OpenMP. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001. 8

[13] A. L. Codd and L. Gross. Three-dimensional inversion for sparse potential
data using first-order system least squares with application to gravity
anomalies in Western Queensland. Geophysical Journal International,
227(3):2095–2120, 2021. doi: 10.1093/gji/ggab323 1

[14] A. Dai and M. Nießner. Scan2mesh: From unstructured range scans to 3D
meshes. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5569–5578. IEEE, Long Beach, CA, USA, 2019.
doi: 10.1109/CVPR.2019.00572 1

[15] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse complexes
for shape segmentation and homological analysis: Discrete models and
algorithms. Computer Graphics Forum, 34(2):761–785, 2015. doi: 10.
1111/cgf.12596 2

[16] L. De Floriani, D. Greenfieldboyce, and A. Hui. A data structure
for non-manifold simplicial d-complexes. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp.
83–92. ACM, Nice, France, 2004. doi: 10.1145/1057432.1057444 2

[17] L. De Floriani, A. Hui, D. Panozzo, and D. Canino. A dimension-
independent data structure for simplicial complexes. Proceedings of

the 19th International Meshing Roundtable, pp. 403–420, 2010. doi: 10.
1007/978-3-642-15414-0_24 2

[18] H. Edelsbrunner. Algorithms in combinatorial geometry, vol. 10. Springer
Verlag, 1987. doi: 10.1007/978-3-642-61568-9 2

[19] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-smale
complexes for piecewise linear 3-manifolds. In Proceedings of the 19th
Annual Symposium on Computational Geometry, SCG ’03, pp. 361–370.
ACM, New York, NY, USA, June 2003. doi: 10.1145/777792.777846 4

[20] R. Fellegara, K. Weiss, and L. De Floriani. The Stellar decomposition: A
compact representation for simplicial complexes and beyond. Computers
& Graphics, 98:322–343, Aug. 2021. doi: 10.1016/j.cag.2021.05.002 1,
2, 3, 4, 5

[21] R. Forman. A user’s guide to discrete morse theory. Séminaire
Lotharingien de Combinatoire, 48:B48c, 35 p., 2002. 5

[22] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Contour forests: Fast multi-
threaded augmented contour trees. In 2016 IEEE 6th Symposium on Large
Data Analysis and Visualization (LDAV), pp. 85–92. IEEE, Baltimore, MD,
USA, 2016. doi: 10.1109/LDAV.2016.7874333 2

[23] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
contour trees with Fibonacci heaps. IEEE Transactions on Parallel and
Distributed Systems, 30(8):1889–1905, 2019. doi: 10.1109/TPDS.2019.
2898436 2

[24] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac. SQuad: Compact
representation for triangle meshes. Computer Graphics Forum, 30(2):355–
364, 2011. doi: 10.1111/j.1467-8659.2011.01866.x 2

[25] T. Gurung and J. Rossignac. SOT: Compact representation for tetrahedral
meshes. In 2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling, SPM ’09, p. 79–88. Association for Computing Machinery,
New York, NY, USA, 2009. doi: 10.1145/1629255.1629266 2

[26] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A practical
approach to Morse-Smale complex computation: Scalability and generality.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1619–
1626, 2008. doi: 10.1109/TVCG.2008.110 2

[27] A. Gyulassy, P.-T. Bremer, and V. Pascucci. Computing Morse-Smale
complexes with accurate geometry. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2014–2022, 2012. doi: 10.1109/TVCG.
2012.209 2

[28] A. Gyulassy, P.-T. Bremer, and V. Pascucci. Shared-memory parallel
computation of Morse-Smale complexes with improved accuracy. IEEE
Transactions on Visualization and Computer Graphics, 25(1):1183–1192,
2019. doi: 10.1109/TVCG.2018.2864848 2

[29] A. Gyulassy, D. Günther, J. A. Levine, J. Tierny, and V. Pascucci.
Conforming Morse-Smale complexes. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2595–2603, 2014. doi: 10.1109/TVCG.
2014.2346434 2

[30] A. Gyulassy, V. Pascucci, T. Peterka, and R. Ross. The parallel
computation of Morse-Smale complexes. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 484–495. IEEE,
Shanghai, China, 2012. doi: 10.1109/IPDPS.2012.52 2

[31] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Computer Graphics Forum, 35(3):643–667, June
2016. doi: 10.1111/cgf.12933 2

[32] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pel-
ties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan, M. Smelyanskiy,
and P. Dubey. Petascale high order dynamic rupture earthquake simulations
on heterogeneous supercomputers. In SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 3–14. IEEE, New Orleans, LA, USA, 2014. doi:
10.1109/SC.2014.6 1

[33] R. C. Hilzer. Synchronization of the producer/consumer problem using
semaphores, monitors, and the ada rendezvous. ACM SIGOPS Operating
Systems Review, 26(3):31–39, July 1992. doi: 10.1145/130888.130891 3

[34] H. Hu and P. Yadmellat. Spatial constraint generation for motion planning
in dynamic environments. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 384–389. IEEE, Prague, Czech
Republic, 2021. doi: 10.1109/IROS51168.2021.9636067 1

[35] X. Huang, P. Klacansky, S. Petruzza, A. Gyulassy, P.-T. Bremer, and
V. Pascucci. Distributed merge forest: A new fast and scalable approach
for topological analysis at scale. In Proceedings of the ACM International
Conference on Supercomputing, ICS ’21, p. 367–377. ACM, New York,
NY, USA, 2021. doi: 10.1145/3447818.3460358 2

[36] C. Kessler and J. Keller. Models for parallel computing : Review and

https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1109/ICRA48506.2021.9561099
https://doi.org/10.1080/00029890.1970.11992523
https://doi.org/10.1080/00029890.1970.11992523
https://doi.org/10.2312/evs.20221104
https://doi.org/10.1002/jcc.25181
https://doi.org/10.1007/s00453-014-9887-3
https://doi.org/10.1007/978-3-319-02335-9_26
https://doi.org/10.1016/j.cag.2011.03.009
https://doi.org/10.1016/j.cag.2011.03.009
https://doi.org/10.1109/LDAV57265.2022.9966394
https://doi.org/10.1109/LDAV.2016.7874312
https://doi.org/10.1109/TVCG.2019.2948616
https://doi.org/10.1093/gji/ggab323
https://doi.org/10.1109/CVPR.2019.00572
https://doi.org/10.1111/cgf.12596
https://doi.org/10.1111/cgf.12596
https://doi.org/10.1145/1057432.1057444
https://doi.org/10.1007/978-3-642-15414-0_24
https://doi.org/10.1007/978-3-642-15414-0_24
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1145/777792.777846
https://doi.org/10.1016/j.cag.2021.05.002
https://doi.org/10.1109/LDAV.2016.7874333
https://doi.org/10.1109/TPDS.2019.2898436
https://doi.org/10.1109/TPDS.2019.2898436
https://doi.org/10.1111/j.1467-8659.2011.01866.x
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1109/TVCG.2008.110
https://doi.org/10.1109/TVCG.2012.209
https://doi.org/10.1109/TVCG.2012.209
https://doi.org/10.1109/TVCG.2018.2864848
https://doi.org/10.1109/TVCG.2014.2346434
https://doi.org/10.1109/TVCG.2014.2346434
https://doi.org/10.1109/IPDPS.2012.52
https://doi.org/10.1111/cgf.12933
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1109/SC.2014.6
https://doi.org/10.1145/130888.130891
https://doi.org/10.1109/IROS51168.2021.9636067
https://doi.org/10.1145/3447818.3460358

perspectives. Mitteilungen - Gesellschaft für Informatik e.V., Parallel-
Algorithmen und Rechnerstrukturen, 24:13–29, 2007. 1

[37] P. Klacansky, A. Gyulassy, P.-T. Bremer, and V. Pascucci. Toward
localized topological data structures: Querying the forest for the tree.
IEEE Transactions on Visualization and Computer Graphics, 26(1):173–
183, 2020. doi: 10.1109/TVCG.2019.2934257 2

[38] M. Kremer, D. Bommes, and L. Kobbelt. OpenVolumeMesh – a versatile
index-based data structure for 3D polytopal complexes. In X. Jiao and J.-C.
Weill, eds., Proceedings of the 21st International Meshing Roundtable,
pp. 531–548. Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642
-33573-0_31 2

[39] C. Lawson. Software for C1 surface interpolation. In J. R. Rice, ed.,
Mathematical Software, pp. 161–194. Academic Press, 1977. doi: 10.
1016/B978-0-12-587260-7.50011-X 2

[40] G. Liu, F. Iuricich, R. Fellegara, and L. De Floriani. TopoCluster:
A localized data structure for topology-based visualization. IEEE
Transactions on Visualization and Computer Graphics, 29(2):1506–1517,
2023. doi: 10.1109/TVCG.2021.3121229 1, 2, 3, 4, 5, 6, 7, 9

[41] M. Luffel, T. Gurung, P. Lindstrom, and J. Rossignac. Grouper: A
compact, streamable triangle mesh data structure. IEEE Transactions
on Visualization and Computer Graphics, 20(1):84–98, 2014. doi: 10.
1109/TVCG.2013.81 2

[42] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient space skipping
and adaptive sampling of unstructured volumes using hardware accelerated
ray tracing. In 2019 IEEE Visualization Conference (VIS), pp. 256–
260. IEEE, Vancouver, BC, Canada, 2019. doi: 10.1109/VISUAL.2019.
8933539 1

[43] G. M. Nielson. Tools for triangulations and tetrahedralizations and
constructing functions defined over them. In G. M. Nielson, H. Hagen,
and H. Müller, eds., Scientific Visualization: overviews, Methodologies
and Techniques, chap. 20, pp. 429–525. IEEE Computer Society, Silver
Spring, MD, 1997. 2

[44] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-
independent modeling with simplicial complexes. ACM Transactions
on Graphics (TOG), 12(1):56–102, 1993. doi: 10.1145/169728.169719 2

[45] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks for custom
data analysis. In 2011 IEEE Symposium on Large Data Analysis and
Visualization (LDAV), pp. 105–112. IEEE, Providence, RI, USA, 2011.
doi: 10.1109/LDAV.2011.6092324 2

[46] M. Pont, J. Vidal, J. Delon, and J. Tierny. Wasserstein distances, geodesics
and barycenters of merge trees. IEEE Transactions on Visualization and
Computer Graphics, 28(01):291–301, Jan. 2022. doi: 10.1109/TVCG.
2021.3114839 10

[47] V. Robins, P. J. Wood, and A. P. Sheppard. Theory and algorithms for
constructing discrete morse complexes from grayscale digital images.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(8):1646–1658, 2011. doi: 10.1109/TPAMI.2011.95 2

[48] H. Samet. Foundations of Multidimensional and Metric Data Structures.
The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005. 2

[49] S. Sathar, M. L. Trew, and L. K. Cheng. Tissue specific simulations of
interstitial cells of cajal networks using unstructured meshes. In 2015 37th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 8062–8065. IEEE, Milan, Italy, 2015.
doi: 10.1109/EMBC.2015.7320264 1

[50] N. Shivashankar and V. Natarajan. Parallel computation of 3D Morse-
Smale complexes. Computer Graphics Forum, 31(3pt1):965–974, June
2012. doi: 10.1111/j.1467-8659.2012.03089.x 2, 5

[51] D. Shulga, O. Morozov, and P. Hunziker. A tensor B-spline approach for
solving the diffusion pde with application to optical diffusion tomography.
IEEE Transactions on Medical Imaging, 36(4):972–982, 2017. doi: 10.
1109/TMI.2016.2641500 1

[52] V. Subhash, K. Pandey, and V. Natarajan. GPU parallel computation of
Morse-Smale complexes. In 2020 IEEE Visualization Conference (VIS),
pp. 36–40. IEEE, Salt Lake City, UT, USA, 2020. doi: 10.1109/VIS47514
.2020.00014 3

[53] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics, 24(1):832–842, 2018. doi: 10.1109/TVCG.2017.2743938 1, 2,
9

[54] I. Wald, N. Morrical, and S. Zellmann. A memory efficient encoding for

ray tracing large unstructured data. IEEE Transactions on Visualization
and Computer Graphics, 28(1):583–592, 2022. doi: 10.1109/TVCG.2021.
3114869 2

[55] K. Weiss, L. De Floriani, R. Fellegara, and M. Velloso. The PR-star octree:
a spatio-topological data structure for tetrahedral meshes. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’11, pp. 92–101. ACM, ACM, New
York, NY, USA, 2011. doi: 10.1145/2093973.2093987 1, 2, 3, 4

[56] X. Xu, F. Iuricich, K. Calders, J. Armston, and L. De Floriani. Topology-
based individual tree segmentation for automated processing of terrestrial
laser scanning point clouds. International Journal of Applied Earth
Observation and Geoinformation, 116:103145, 2023. doi: 10.1016/j.jag.
2022.103145 1

[57] L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan,
I. Hotz, and B. Wang. Scalar field comparison with topological descriptors:
Properties and applications for scientific visualization. Computer Graphics
Forum, 40(3):599–633, 2021. doi: 10.1111/cgf.14331 2

[58] X. Zhao, X. Yu, M. Qiu, F. Qing, and S. Zou. An arbitrary Lagrangian-
Eulerian RKDG method for multi-material flows on adaptive unstructured
meshes. Computers & Fluids, 207:104589, 2020. doi: 10.1016/j.
compfluid.2020.104589 1

[59] A. ¸ Sahıstan, S. Demirci, N. Morrical, S. Zellmann, A. Aman, I. Wald,
and U. Güdükbay. Ray-traced shell traversal of tetrahedral meshes for
direct volume visualization. In 2021 IEEE Visualization Conference (VIS),
pp. 91–95. IEEE, New Orleans, LA, USA, 2021. doi: 10.1109/VIS49827.
2021.9623298 1

https://doi.org/10.1109/TVCG.2019.2934257
https://doi.org/10.1007/978-3-642-33573-0_31
https://doi.org/10.1007/978-3-642-33573-0_31
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1109/TVCG.2021.3121229
https://doi.org/10.1109/TVCG.2013.81
https://doi.org/10.1109/TVCG.2013.81
https://doi.org/10.1109/VISUAL.2019.8933539
https://doi.org/10.1109/VISUAL.2019.8933539
https://doi.org/10.1145/169728.169719
https://doi.org/10.1109/LDAV.2011.6092324
https://doi.org/10.1109/TVCG.2021.3114839
https://doi.org/10.1109/TVCG.2021.3114839
https://doi.org/10.1109/TPAMI.2011.95
https://doi.org/10.1109/EMBC.2015.7320264
https://doi.org/10.1111/j.1467-8659.2012.03089.x
https://doi.org/10.1109/TMI.2016.2641500
https://doi.org/10.1109/TMI.2016.2641500
https://doi.org/10.1109/VIS47514.2020.00014
https://doi.org/10.1109/VIS47514.2020.00014
https://doi.org/10.1109/TVCG.2017.2743938
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1145/2093973.2093987
https://doi.org/10.1016/j.jag.2022.103145
https://doi.org/10.1016/j.jag.2022.103145
https://doi.org/10.1111/cgf.14331
https://doi.org/10.1016/j.compfluid.2020.104589
https://doi.org/10.1016/j.compfluid.2020.104589
https://doi.org/10.1109/VIS49827.2021.9623298
https://doi.org/10.1109/VIS49827.2021.9623298

	Introduction
	Background
	Simplicial complex
	Topological relations

	Related work
	Data structures for simplicial complexes
	Parallel computation for topological data analysis

	Task-parallel computation approach
	Consumers and producers
	Computing new blocks for worker producers

	The ACTOPO Data Structure
	Encodings of static information
	Operations supported at runtime

	Evaluation of Performance
	Experimental setup
	Evaluating robustness on sequential algorithms
	Comparison of computing modes for worker producers
	Comparison of different numbers of producers

	Comparing with state-of-the-art

	Supporting parallel algorithms
	Evaluating robustness on parallel algorithms
	Comparing with state-of-the-art

	Conclusion

