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Abstract—Unstructured meshes are characterized by data points irregularly distributed in the Euclidian space. Due to the irregular 
nature of these data, computing connectivity information between the mesh elements requires much more time and memory than 
on uniformly distributed data. To lower storage costs, dynamic data structures have been proposed. These data structures compute 
connectivity information on the fly and discard them when no longer needed. However, on-the-fly computation slows down algorithms 
and results in a negative impact on the time performance. To address this issue, we propose a new task-parallel approach to proactively 
compute mesh connectivity. Unlike previous approaches implementing data-parallel models, where all threads run the same type 
of instructions, our task-parallel approach allows threads to run different functions. Specifically, some threads run the algorithm 
of choice while other threads compute connectivity information before they are actually needed. The approach was implemented 
in the new Accelerated Clustered TOPOlogical (ACTOPO) data structure, which can support any processing algorithm requiring 
mesh connectivity information. Our experiments show that ACTOPO combines the benefits of state-of-the-art memory-efficient (TTK 
CompactTriangulation) and time-efficient (TTK ExplicitTriangulation) topological data structures. It occupies a similar amount of 
memory as TTK CompactTriangulation while providing up to 5x speedup. Moreover, it achieves comparable time performance as TTK 
ExplicitTriangulation while using only half of the memory space. 

Index Terms—Data structures, parallel computation, topological data analysis, simplicial complex 

1 INTRODUCTION 

The proliferation of high-resolution scanning devices is increasing 
the availability and size of unstructured meshes in applications such 
as computer graphics [14, 42, 59], material science [3, 58], medical 
modeling [49, 51], environmental science [13, 32, 56], and autonomous 
navigation [1, 34]. 

Despite their widespread adoption, processing and visualizing 
unstructured meshes still represents a major bottleneck in the analysis 
pipeline. With regular data, computing and storing the connectivity 
of the mesh elements has a negligible cost since all information is 
implicitly provided by the data regularity. With unstructured data, 
instead, the same operation increases the memory footprint to the point 
of saturating the available memory. 

Dynamic data structures have been proposed [20, 40] to cope with 
this problem by managing memory usage at runtime. The key idea 
of these approaches is to compute connectivity information only for a 
subset of the mesh at a time, discarding information when no longer 
needed. This approach provided advantages for memory consumption, 
but resulted in algorithms two to four times slower than state-of-the-art 
data structures [40]. 

In this paper, we propose a new block-based task-parallel compu-
tation model to obtain data structures that are both time and memory 
efficient. Block-based [20,40,55] indicates a data structure that executes 
fine-grain operations locally (on subsets of the input mesh) rather than 
processing the entire mesh at once. Task-parallel [36] indicates a data 
structure integrating pipelined data computation and data consumption 
tasks. The combination of these two characteristics allows the data 
structure to self-organize resources at runtime, computing information 
before they are needed for local data consumption and discarding 
information when no longer needed. 

The main contributions of this work include: 

• A new task-parallel computation model for unstructured mesh 
processing; 

• A new data structure implementing the proposed model; 
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• A comparison with state-of-the-art topological data structures on 
a wide range of unstructured meshes and processing algorithms 
(both sequential and parallel); 

• An open-source integration of the proposed data structure in the 
TTK framework [53]. 

2 BACKGROUND 

In this section, we introduce the necessary background information for 
topological data structures, including the notion of simplicial complex 
and topological relation. 

2.1 Simplicial complex 

A k-simplex (or simplex of dimension k) is defined as the convex hull of 
k + 1 linearly independent points in the Euclidean space. A 0-simplex 
is also referred to as a point, a 1-simplex as an edge, a 2-simplex as a 
triangle, and so on. Given a k-simplex σ , the convex hull of a nonempty 
subset of size m + 1 of the k + 1 points (i.e., m < k) that defines an 
m-simplex τ is called an m-face of σ , and σ is said to be a coface of τ . 
The set of cofaces of a simplex σ forms the star of σ . 

A simplicial complex Σ is a set of simplices such that every face of 
a simplex σ is also in Σ, and the intersection of any two simplices σ 
and τ is either a face of both or empty. A simplex that is not a proper 
face of any other simplex in Σ is called top simplex. The dimension d 
of Σ is equal to the largest dimension of any simplex in Σ. 

2.2 Topological relations 

Three types of topological relations describe the connectivity of the 
simplices in a simplicial complex Σ. The boundary relation maps a 
simplex to its faces, the coboundary relation maps a simplex to its 
cofaces, and the adjacency relation maps a simplex to other simplexes 
next to it. Suppose that two simplices σ and τ are in Σ, and σ is a face 
of τ , we say that σ is on the boundary of τ , and similarly, τ is on the 
coboundary of σ . Two k-simplices τ1 and τ2 are adjacent if and only if 
they share a common (k − 1)-simplex σ , and two vertices are adjacent 
if they are on the same edge. 

In this paper, we focus on the topological relations between the 
simplices of a tetrahedral mesh and use capital letters to indicate 
whether the relation involves a vertex (V ), edge (E), triangle (F), or 
tetrahedron (T ). Each topological relation is represented with a pair of 
letters, e.g., FE relation denotes the edges on the boundary of a triangle. 
For a tetrahedral mesh, there are six boundary relations (EV , FV , TV , 
FE, T E, T F), six coboundary relations (V E, V F , V T , EF , ET , FT ), 
and four adjacency relations (VV , EE, FF , T T ). 
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Figure 1 shows two example topological relations for a simple 
tetrahedral mesh composed by two tetrahedra sharing a common 
triangle face. Figure 1(a) shows the V E relation for the vertex v0, which 
involves the edges e0, e1, e2, and e3 highlighted in red. Figure 1(b) 
shows the FV relation for the triangle f0, which involves the vertices 
v0, v1, and v2. 

(a) (b) 
Fig. 1: A simplicial complex composed by two tetrahedra sharing a 
triangle face. (a) V E relation for vertex v0. (b) FV relation for triangle f0. 

3 RELATED WORK 

In this section, we review data structures designed for encoding 
simplicial complexes, and we provide an overview of how parallel 
computation is used for stuying the mesh topology. 

3.1 Data structures for simplicial complexes 

In this work we focus on data structures that allow the retrieval of 
any topological relation in a mesh. A number of data structures 
encode unstructured meshes without representing their connectivity 
information. These are useful for specific tasks (e.g., ray tracing [54]) 
but are inadequate to support topological algorithms. 

Data structures that provide access to topological relations can be 
classified into two categories: static and dynamic. 

Static data structures. The approach adopted by static data 
structures is to compute and store topological relations at initialization 
time. Differences among them are to be found in the types of relations 
they encode. 

The Incidence graph [18] is the most general static data structure for 
simplicial complexes of arbitrary dimension, which explicitly encodes 
all simplices and all boundary and coboundary relations. Given the 
huge memory consumption it requires, several compact alternatives 
have been developed to reduce its memory footprint [16, 17]. 

The Simplex tree [6] avoids encoding boundary relations by 
organizing all simplices of Σ in a trie [4]. The result is a data structure 
that can efficiently support the query of coboundary relations, but that 
still has limited scalability when working with simplicial complexes in 
high dimensions [20]. 

The Half-edge data structure [43] is a well-known data structure for 
triangle meshes, which reduces the storage costs by only encoding the 
topological relations involving edges. Half-faces [38] generalizes the 
concept of the half-edge to polyhedral complexes. 

Indexed data structures [39] provide a more compact option by 
encoding only vertices, top simplices, and the boundary relation from 
top simplices to their vertices. It contains sufficient information to 
extract efficiently all the boundary relations of cells, but it requires 
additional steps for coboundary or adjacency relations. 

Several data structures have been developed to encode the connec-
tivity through adjacency relations. Examples include the Indexed data 
structure with Adjacencies (IA data structure) [44, 47] and the Corner-
Table data structure [48] along with its several extensions specifically 
proposed for triangle meshes [24, 41] and tetrahedral meshes [25]. 
The Generalized Indexed data structure with Adjacencies (IA* data 
structure) [8] extends the IA data structure to non-manifold simplicial 
complexes of arbitrary dimension. The IA* data structure has shown to 
be most compact among static topological data structures, especially as 
the dimension increases [7]. 

Dynamic data structures. Unlike static data structures, dynamic 
data structures compute (and discard) topological relations during 
runtime rather than at initialization time. 

The PR-star octree [55] is considered the first dynamic topological 
data structure. It supports the reconstruction of the connectivity 
information of a simplicial complex by only encoding the list of 
tetrahedra incident in each vertex. The data structure is capable of 
extracting the boundary and coboundary relations locally to a subset of 
the mesh by using a PR-Octree decomposition of the mesh vertices. 

The Stellar tree data structure [20] generalizes the PR-star octree 
to handle a broader class of complexes in arbitrary dimensions and is 
the first concrete realization of the Stellar decomposition model [20]. 
The Stellar tree is shown to be more compact than most state-of-the-art 
static data structures, requiring only a fraction of the memory space of 
the latter [20]. 

The Stellar decomposition model has also been adopted by the 
TopoCluster data structure [40], which enriches the Stellar decomposi-
tion with an implicit enumeration scheme for the mesh simplices. This 
scheme provides an interface for the easy integration of TopoCluster 
into any algorithm for topological data analysis. The easy and 
general integration of TopoCluster was demonstrated by deploying 
the data structure in the TTK framework [53], which allowed running 
any algorithm implemented in the framework out-of-the-box while 
drastically reducing the memory footprint. 

3.2 Parallel computation for topological data analysis 

Rather than focusing on the speedup provided by the underlying data 
structure, some research work aimed at improving the performance 
of specific topological algorithms. To this end, parallel computation 
plays a major role in topology-based visualization [15, 31, 57]. While 
certain routines are embarrassingly parallel by nature, (e.g., critical 
points [2] or Forman gradient computation [47]), the extraction 
of many topological abstractions requires the study of dedicated 
parallel approaches. Notice that all the following methods have been 
evaluated on regular grids where the dataset subdivision and topological 
information are implicitly encoded. 

Merge and contour trees. The contour forests algorithm [22] 
presents a fast, shared memory multi-threaded computation of contour 
trees on tetrahedral meshes. The approach partitions the domain first, 
computes the local contour trees for each partition, and stitches the 
resulting forest into the final augmented contour tree. Gueunet et al. 
proposed a new approach based on Fibonacci heaps [23] that skips 
the domain subdivision step by distributing the computations of the 
merge tree arcs to independent tasks on the CPU cores. A pure data-
parallel algorithm with the support of GPU acceleration, Parallel Peak 
Pruning (PPP) [10, 11], has been developed for computing both merge 
and contour trees in unaugmented form using OpenMP for threading 
and using Thrust for GPU. The PPP algorithm presents up to 70x 
speedup compared to the serial sweep and merge algorithm supporting 
the contour tree computation for arbitrary (topology) graphs [9]. In 
contrast to building the global merge tree, the merge forest approach 
[37] decomposes the domain, maintains the local merge trees connected 
by a local reduced bridge set, and computes the necessary global 
information only at query time. As a result, the merge forest represents 
a localized data structure designed for answering queries related to 
merge trees without expensive precomputation costs. This idea has 
been generalized further for distributed environments [35]. 

Morse-Smale complex. Parallel algorithms for computing a 3D 
Morse-Smale (MS) complex [30, 45] extend the divide-and-conquer 
strategy presented by Gyulassy et al. [26]. The idea is to partition 
data into blocks, compute the MS complex for the individual blocks, 
and then merge the MS cells with a dedicated merge-and-simplify 
routine. Many approaches have focused on the geometric accuracy 
of the reconstructed model rather than the efficiency of the parallel 
approach [5, 27–29]. An exception is the hybrid (CPU-GPU) shared-
memory algorithm proposed by Shivashankar et al. [50]. The algorithm 
assigns embarrassingly parallel tasks such as gradient computation 
and extreme traversals to the GPU, and thus results in substantial 



speedup over CPU-based approaches. A pure GPU parallel algorithm 
for computing the MS complex has also been developed recently [52], 
which transforms the graph traversal operations into vector and matrix 
operations that are better suited for GPU parallel computation. 

4 TASK-PARALLEL COMPUTATION APPROACH 

In this section, we describe our proposed task-parallel model. To clarify 
the difference between our proposed model and existing approaches, we 
first review common computation models used by static and dynamic 
data structures. 

Static data structures use a preprocessing approach, where topologi-
cal relations are computed in bulk during the initialization of the data 
structure and then stored until the algorithm has been executed. As 
shown in Fig. 2(a), thread t1 first computes the topological relations of 
the entire mesh, and then uses them in the selected algorithm. 

Fig. 2: (a) Workflow of typical static data structures. The thread computes 
topological relations for the entire mesh first and then use them in the 
algorithm. (b) Workflow of the traditional dynamic approach. The thread 
works with one block at a time. It computes and uses the topological 
relations in a sequential order. (c) Workflow of the proposed task-parallel 
approach with two threads. One is only responsible for precomputing 
topological relations, and the other executes the algorithm by using the 
topological relations. 

Dynamic data structures compute information on-the-fly by process-
ing one subset of the mesh at a time, which is achieved by dividing the 
dataset into blocks [20, 40, 55]. In practice, the running thread accesses 
one of the blocks, computes the required topological relations, and then 
runs the algorithm inside the block. Fig. 2(b) shows an example of such 
workflow executed by thread t1 that computes the topological relations 
for the mesh subset b1, executes the algorithm locally on b1 using these 
relations, and then moves to the next portion of the mesh b2 to repeat 
the same process. 

The goal of our task-parallel model is to avoid the switching between 
algorithm execution and topological relations computation. Our model 
still assumes that the input mesh is subdivided into blocks. However, 
it introduces two types of threads, specialized in the computation 
of topological relations and in the algorithm execution, respectively. 
Fig. 2(c) shows an example of our proposed approach. Thread t1 is 
created for running the processing algorithm, while thread t2 is used 
for computing topological relations. In practice, thread t2 precomputes 
topological relations for thread t1 so that, as long as topological 
relations are provided, t1 keeps executing instructions from the selected 
algorithm on each block. 

The key difference in the execution of thread t1 is that the time 
originally spent to compute topological relations in the traditional 
approach (Fig. 2(b)) is now replaced by a waiting time (Fig. 2(c)) in 
the new approach. The more efficient thread t2 computes topological 
relations for t1, the shorter t1’s waiting time will be. 

4.1 Consumers and producers 

Our approach integrates a classic producer-consumer paradigm with 
constrained consumers [33]. Threads that compute topological relations 

are called producers. Threads that use these topological relations to run 
a processing algorithm are called consumers. 

Our model involves two types of producers. Worker producers are 
unconstrained threads that can compute topological relations in any 
block without a specific request. Leader producers are constrained 
producers that compute topological relations only if specifically asked 
by a consumer. Moreover, they manage the communication between 
consumers and worker producers. 

Fig. 3 shows the general workflow and communication strategy used 
by these types of threads. In the following, we provide a detailed 
description of the behavior of each thread type, assuming a sequential 
algorithm is being executed (i.e., a single consumer thread is involved). 

Fig. 3: The task-parallel producer-consumer paradigm. Orange, green, 
and blue colors indicate the activities of the consumer, leader producer, 
and worker producer threads, respectively. 

Consumer. The consumer thread is the first thread to be spawned. 
The consumer thread spawns the leader producer thread and runs 
the selected processing algorithm that makes requests for topological 
relations. Our model involves a buffer system that all threads can use 
to store/retrieve topological relations (see Fig. 3). Assuming that a 
topological relation R for a simplex σ is requested, the consumer first 
identifies the block bi containing σ . Then, it searches the buffer to 
verify if the relation R for the block bi has been computed. If yes, the 
consumer keeps running the processing algorithm inside b. Otherwise, 
the consumer stops its execution and invokes a request to the leader 
producer. 

Leader producer. The leader producer acts as a middle-layer be-
tween the consumer and the worker producers. During the initialization 
phase, the leader producer creates the worker producers and starts 
monitoring the consumer’s working block (i.e., on which block the 
consumer is running the processing algorithm). 

Every time the consumer requests a topological relation for a simplex 
(e.g.,R(σ)) that is not stored in the buffer, the leader producer promptly 
computes the relation R for the block bi containing the simplex σ 
and notifies the consumer that the topological relation R(σ) is ready. 
Then, the leader producer notifies the worker producers that topological 
relations will be needed in the proximity of bi. 

Worker producer. Similar to the leader producer, the task of 
worker producers is to precompute topological relations in a block 
and store them in the buffer. The difference is that worker producers 
process blocks independently without an explicit request, unless they 
are notified by the leader producer. 

Worker producers are spawned by the leader producer and are 
allocated to a block bi to compute topological relations. Worker and 
leader producers share a variable indicating the index i of the block bi 
where the consumer is working. Moreover, they share a second variable 
indicating the index j of the last topological relation R j requested by 



the consumer. These variables are controlled by a lock to prevent 
multiple producers from computing the same topological relation on 
the same block. Once a worker thread acquires the lock to access bi, it 
modifies either bi or R j to the new value for next worker, releases the 
lock, and then proceeds with computing the topological relation with 
saved R j and bi before modification. This way, the next worker thread 
that acquires the lock will not compute the same relation on the same 
block (see Section 4.1.1 for details on how worker producers update 
the block bi and topological relation index R j). 

This workflow can only get interrupted by the leader producer at any 
time, which will force all worker threads to move to bi by updating the 
corresponding shared variable. 

4.1.1 Computing new blocks for worker producers 

After studying a wide range of processing algorithms, particularly 
those related to topology-based visualization, we have recognized key 
differences in their access patterns (the order in which they access 
blocks) and the types of topological relations they request. To address 
this diversity, we have defined multiple computing modes for worker 
producers to experiment with different orders for visiting blocks and 
the number of topological relations to compute. All computing modes 
have been implemented and experimentally evaluated (see Section 6). 

Moving directions. As discussed previously, worker producers 
control the exclusive access to blocks through a shared variable. We 
have defined two possible strategies that a worker thread can use to 
update the variable. 

The first strategy aims at precomputing relations for blocks with 
the index following the block bi, i.e., the next block to compute is 
Next(bi) = bi+1. The strategy is designed based on the fact that many 
topology-based visualization algorithms loop through the simplices in 
the mesh based on their indices. In most block-based data structures 
[20, 40, 55], block indices follow the same order as the global indices 
of simplices. We refer to this buffer strategy as linear buffer, which is 
demonstrated in Fig. 4(a). Given the current block is b5, the worker 
thread will precompute block b6, followed by b7, b8, and b9. 

The second strategy aims at precomputing relations for all neighbors 
of a block bi. We say two blocks are neighbors if they share a 
common tetrahedron. This strategy is motivated by the fact that certain 
algorithms (e.g. Morse-Smale computation [19]) visit simplices based 
on their connectivity rather than their indexing. These algorithms 
visit neighboring blocks in an unpredictable order which motivates the 
precomputation of all blocks surrounding the current one. We refer 
to this buffer strategy as spatial buffer. Fig. 4(b) shows an example 
of the moving direction in the spatial order. Since the neighbor set of 
the current block b5 is Neighbors(b5) = {b1,b2,b3,b4,b6,b7,b8,b9}, 
after b5 is computed, the worker thread will start visiting blocks in 
Neighbors(b5), e.g., b1. 

(a) (b) 
Fig. 4: Different moving directions (in green color) of worker producers 
for block b5: (a) linear order, (b) spatial order. 

Topological relations. After moving to a new block bi, the worker 
producer will compute topological relations R for the simplices in 
bi. At this point, the worker thread has two options, and the most 
straightforward one is to compute only the topological relation R 
specified in the last consumer’s request. In this case, the worker 

producer will update the block index once finished (based on the moving 
direction mentioned earlier) while leaving the topological relation index 
R j untouched. 

However, we observed that processing algorithms rarely use only one 
topological relation at a time. Instead, multiple topological relations are 
usually requested for the same block or for the same simplex. Therefore, 
an alternative approach for the worker producer is to compute all types 
of topological relations used by the algorithm when accessing a new 
block. In this case, each worker producer will update the relation index 
R j to indicate that more topological relations need to be extracted in 
this block. Once all topological relations are precomputed, the last 
worker thread accessing the block will increment the block index bi, 
according to the specified moving direction. 

5 THE ACTOPO DATA STRUCTURE 

Using the task-parallel framework described in Sec. 4, we implement 
a new data structure called Accelerated Clustered TOPOlogical 
(ACTOPO) data structure. In the remainder of this section, we describe 
the encodings of ACTOPO and the implementation choices made to 
integrate consumer, leader producer, and worker producer threads in 
the data structure. 

5.1 Encodings of static information 

The static information encoded by ACTOPO comprises the repre-
sentation of the input unstructured mesh and additional information 
computed at initialization time. In the following, we assume that the 
input is a tetrahedral mesh that has already been subdivided into blocks. 
However, the same approach could be used to encode meshes defined 
by general polytopes. 

Input. The input tetrahedral mesh contains only information for 
vertices and tetrahedra. An indexed list V stores the coordinate values 
of each vertex. An indexed list T stores the vertices forming each 
tetrahedron (TV relation). 

The data structure also assumes a subdivision of the mesh is defined 
based on the mesh vertices and is also provided in the input. Vertices 
with the same label belong to the same block. An indexed list I is used 
to encode the block that each vertex belongs to. It is a requirement of 
the subdivision that each vertex is contained in exactly one block. 

Fig. 5 shows an example of the encodings of an input mesh. The 
example tetrahedral mesh shows that v0 and v1 belong to the same 
block (i.e., I[v0] = I[v1] = b1), while the remaining vertices are in the 
block b2 (i.e., I[v2] = I[v3] = I[v4] = I[v5] = 2). 

Based on the subdivsion of the mesh vertices we can create an 
association between a simplex σ and a block bi. Specifically, we say 
that a simplex σ is internal to the block bi iff. the vertex v of σ with the 
lowest index also belongs to bi and is external to all other intersecting 
blocks. 

Fig. 5: The input mesh that includes the vertex list V , tetrahedron list T , 
and a subdivision I. 

Initialization. In addition to the input mesh, the data structure 
computes and stores the boundary relations of each simplex σ with its 
vertices. Since this information is not provided for edges and triangles 
(i.e., EV , FV ), these relations are computed during the initialization 
phase. 

The extraction is performed by iterating through the tetrahedra in 
each block. For each tetrahedron, all possible combinations of two 



vertices (EV relation) and three vertices (FV relation) are collected 
and stored in an indexed list after removing duplicates. Fig. 6 shows 
the additional information encoded by the data structure after the 
initialization. Two indexed lists E and F are used to store the edges and 
triangles globally. For each block bi, we also encode a list of external 
tetrahedra Tex. 

Fig. 6: Encodings of ACTOPO after initialization, which include edge list 
E, triangle list F , external tetrahedra list Tex, and interval arrays for edges 
and triangles SE and SF . 

In addition, the data structure maintains an interval array for edges 
and triangles, SE and SF respectively, indicating the largest edge and 
triangle indices contained in each block. These arrays are used to get 
local edges and triangles of a block from the global edge and triangle 
lists E and F . 

5.2 Operations supported at runtime 

As mentioned earlier in Sec. 4.1, every time the algorithm requires a 
topological relation of a simplex σ , the consumer will first locate the 
block bi containing σ . This step requires constant time, as bi = I(v) 
for a vertex v = σ and bi = minv∈σ I(v) for any other simplex σ . 

The buffer system is implemented using a linked list that stores the 
index i of each precomputed block bi. While the linked list ensures fast 
insertion and deletion operations, a supplemental hash table of block 
indices is used for quick lookup. Therefore, it just takes constant time 
for the consumer thread to check whether a block bi is available in the 
buffer. From the consumer thread’s perspective, the buffer works like a 
black box. This feature makes the model universally applicable to any 
topological algorithm. 

While the consumer thread can only read data from the buffer, the 
leader producer is the thread that actually manages the buffer. The 
buffer system in ACTOPO operates on a First-In-First-Out (FIFO) 
order, and an additional integer value caps the maximum number of 
blocks allowed in the buffer. Before notifying worker producers, the 
leader producer checks the free space remaining in the buffer. If the 
buffer is at capacity, the leader producer cleans up half of the buffer 
based on the chronological order in which blocks were added. 

It is worth noting that the computation of a local topological relation 
R within a block bi is not different from the approach used by other 
dynamic data structures [20, 40]. Typically, this involves iterating 
through internal, and sometimes external, tetrahedron list of bi, and 
constructing the simplices of interest from vertices of the tetrahedron 
(e.g, a pair of vertices can form an edge). Due to the limited space 
available, we report the pseudocode used to extract a representative set 
of these operations in supplemental materials. 

6 EVALUATION OF PERFORMANCE 

In this section, we present an experimental evaluation of our proposed 
data structure when used in combination with sequential algorithms. 
All experiments are performed on a desktop computer equipped with a 
3.2 GHz Intel i7-8700 CPU and 32 gigabytes of RAM. We report the 
average values obtained over 10 runs for each experiment. 

6.1 Experimental setup 

The tetrahedral meshes selected for the performance analysis are listed 
in Tab. 1. Datasets Shapes and Hole are irregular tetrahedral meshes. 
The remaining datasets (i.e., Red Sea, Engine, Earthquake, Foot, 
Asteroid, and Stent) are tetrahedral meshes created by tetrahedralizing 

volume images while filtering out elements corresponding to empty 
parts of the original data domain. 

Table 1: Overview of the experimental datasets, including the number of 
vertices |V |, edges |E|, triangles |F |, and tetrahedra |T |. The type field 
indicates whether the dataset was originally a volume image (Regular ) 
or points are irregularly distributed within the domain (Irregular ). 

Dataset Type |V | |E| |F | |T | 
Red sea Regular 0.95M 6.33M 10.58M 5.20M 
Engine Regular 1.39M 9.14M 15.18M 7.43M 
Earthquake Regular 1.62M 11.14M 18.92M 9.41M 
Foot Regular 4.60M 30.79M 51.51M 25.32M 
Asteroid Regular 5.07M 35.00M 59.58M 29.65M 
Shapes Irregular 7.87M 52.37M 87.63M 43.13M 
Hole Irregular 9.26M 63.70M 108.29M 53.85M 
Stent Regular 17.37M 118.79M 201.40M 99.98M 

ACTOPO has been implemented as a new module of the Topology 
Toolkit (TTK version 1.1.0), and thus all plugins implemented in 
TTK can run seamlessly using the new data structure. We used four 
different TTK plugins to evaluate the performance under different 
runtime conditions. 
TestTopoRelations plugin is a plugin developed in-house for 

profiling the data structure under simplified conditions. The plugin 
iterates over the simplices of the mesh starting from the vertices and 
successively moving to edges, triangles, and tetrahedra. For each 
simplex σ the plugin requires the computation of every boundary and 
coboundary relation involving σ . The plugin traverses the tetrahedral 
mesh following the linear order of simplex indices, i.e., from σ0 to σn, 
where σ denotes a k-simplex in the tetrahedral mesh and n is the total 
number of k-simplices in the mesh. It is selected to test the performance 
of the topological data structure in computing topological relations 
one at a time and to avoid recomputation for localized topological 
data structures since the topological relations of a block will only be 
requested once. 
ScalarFieldCriticalPoints plugin is used to compute critical 

points based on an input scalar function. The plugin requires 
topological relations involving the vertices (i.e., VV , V F , and V T ). The 
only exception is the FT relation, which is used to identify the list of 
vertices on the boundary of the mesh. The plugin traverses the vertices 
of the mesh in the same linear order as TestTopoRelations plugin, 
and then marks vertices that are on the boundary of the mesh. However, 
the plugin requires multiple topological relations to be computed when 
visiting one block instead of only one relation as in the previous testing 
plugin. 
DiscreteGradient plugin [21] computes a discrete Morse gra-

dient field based on an input function. The function F is a discrete 
Morse function if for any p-simplex σ , all the (p − 1)-simplices on 
its boundary have a lower F value and all the (p + 1)-simplices on 
its coboundary have a higher F value, with at most one exception. 
If such exception exists, it defines a pair of cells called a discrete 
gradient vector. Otherwise, p-simplex σ is a critical simplex of index 
p. Intuitively, a discrete vector field can be viewed as a collection 
of arrows, connecting a p-simplex of mesh Σ to an incident (p + 1)-
simplex in such a way that each simplex is a head, or a tail of at most 
one arrow and the critical simplices are neither the head nor the tail of 
any arrow. The plugin iterates all the 0-simplices (i.e., vertices), and 
for each vertex, it adds all k-simplices (k > 0) in the lower star of the 
vertex into a list. If the list is not empty, the plugin finds the pairable 
1-simplex (i.e., edge) for the vertex, 2-simplices (i.e., triangles) for the 
remaining 1-simplices, and so on. Multiple topological relations are 
used when computing the discrete gradient vector, specifically, V E, 
V F , V T , EF , ET , FE, FT , and T F relations. Even though the plugin 
visits vertices sequentially, a simplex can be the face/coface of multiple 
simplices, and the recomputation of its topological relations will be 
requested multiple times during the process. 
MorseSmaleComplex plugin [50] computes a Morse-Smale (MS) 

complex from an input scalar function on the given tetrahedral 
mesh. An integral line is a path on the mesh that is tangent to the 



gradient of the function everywhere. Intuitively, the MS complex is a 
segmentation of the input scalar field in regions where integral lines 
are connected to the same pair of critical points. The plugin first 
computes the discrete gradient on the tetrahedral mesh as described 
in the DiscreteGradient plugin, and the remaining steps require 
to visit the mesh based on the discrete gradient vector, including the 
computation of 1-separatrices, saddle connectors, and segmentation. 
The order in which simplices are visited is defined at runtime. For this 
reason, this plugin denotes the worst-case scenario of the localized 
data structure, as recomputation of one same block could happen 
multiple times during the process. Since the first step of the plugin is 
overlapped with the previous DiscreteGradient plugin, we measure 
its performance by only counting the steps after the discrete gradient 
computation. 

6.2 Evaluating robustness on sequential algorithms 

In this section, we test how robust the proposed approach is when 
varying the model’s parameters, namely, the four different computing 
modes and the total number of producers. For each execution, we 
track the amount of time to finish the algorithm execution and the 
peak memory usage observed during the process. Notice that the 
execution time of the plugin includes the waiting time of the consumer 
(i.e., time spent waiting for a topological relation to be ready) and 
algorithm execution time (i.e., time spent executing the algorithm’s 
instructions). Since parameter changes in the data structure do not affect 
the algorithm, a reduction in the overall execution time is attributed to 
a reduction in the waiting time. 

6.2.1 Comparison of computing modes for worker producers 

The working modes described in Sec. 4.1.1 generate four possible 
configurations for the worker producers. Producers can visit blocks 
either linearly or following a spatial order. Moreover, at each 
request, producers can either compute the requested topological 
relation or all topological relations predefined by the algorithm. 
Our hypothesis is that each mode may be preferable based on the 
algorithm’s characteristics. Specifically, the linear computing mode 
should benefit plugins that iterate through simplices in sequential 
order, i.e., TestTopoRelations, ScalarFieldCriticalPoints, 
and DiscreteGradient plugins. The spatial computing mode should 
be beneficial for plugins that visit simplices with an unpredictable order 
(e.g., MorseSmaleComplex plugin). In the following experiments, 
we focus on the computing mode and test these hypotheses using 6 
producers in total (i.e., 1 leader producer and 5 worker producers). 

Fig. 7 shows the results obtained on three plugins where the linear 
buffer was expected to provide the best performance. 

For TestTopoRelations plugin (Fig. 7(a)), we can notice that the 
topological relation computation makes the real difference. While the 
linear buffer provides a small benefit compared to the spatial buffer, 
computing only the required topological relation provides a 5.2 times 
speedup compared to computing all topological relations used by the 
algorithm. 

The opposite is true for ScalarfieldCriticalPoints (Fig. 7(b)) 
and DiscreteGradient plugins (Fig. 7(c)). Although differences 
across modalities are less pronounced, computing all listed topological 
relations using the linear buffer results in algorithms running 14% 
faster. This is reasonable since the plugin uses multiple relations for 
each vertex at a time. Not surprisingly, precomputing only one single 
topological relation also works better for the MorseSmaleComplex 
plugin (Fig. 8(a)). Unlike the other two plugins, this plugin utilizes 
topological relations to reconstruct Morse-Smale cells while navigating 
the entire mesh. Due to the navigation process only focusing on one 
topological relation at a time, the single mode is beneficial. Moreover, 
the spatial buffer provides slightly better performance than the linear 
one. This is because the computation of the MS complex follows the 
path according to a discrete gradient field and does not always visit 
blocks in a linear order. The spatial buffer precomputing a single 
relation is 85% faster on average. 

Memory usage does not change significantly across modalities. As 
we can expect, the work modes precomputing multiple relations use 

more space compared to those precomputing only one relation, up to 
18% as observed in our experiments. Overall memory usage grows 
linearly with the number of tetrahedra in the input mesh. We include 
detailed graphs in the additional materials only. The only exception is 
the MorseSmaleComplex plugin (Fig. 8). For this plugin, we can also 
notice that the time and memory do not increase consistently as the size 
of datasets increases; this is because extracting the MS cells depends 
on the size of the MS complex instead of the input mesh (i.e., output-
sensitive). Still, computing multiple relations for each block requires 
about 12% more memory space than computing a single relation. 

Lessons learned. Overall, the results match our hypothesis. 
Specifically, the computing mode of linear buffer with the single 
relation works best for TestTopoRelations plugin, the mode of linear 
buffer with all required relations performs best for ScalarField-
CriticalPoints and DiscreteGradient plugins, and the mode of 
spatial buffer with single relation is optimal for MorseSmaleComplex 
plugin. Furthermore, using a spatial buffer with computing all required 
relations is not optimal for any of the testing plugins. 

6.2.2 Comparison of different numbers of producers 

The number of producer threads is another parameter that affects 
performance. Our hypothesis is that more producer threads should 
accelerate the execution of the plugin by reducing the waiting time of 
the consumer thread. For the following experiments, we adopted the 
best computing mode for each plugin, as observed in Sec. 6.2.1, while 
changing the number of producer threads from 1 to 10. Given that 
the same computing mode and buffer capacity are used, differences in 
memory costs are very limited (with a maximum increase of 16% for 
DiscreteGradient plugin and less than 1% for all others). Therefore, 
we only discuss time performance in the following, while providing 
detailed graphs in supplemental materials. 

Fig. 9 shows the time performance of all four tested plugins. For all 
of them, we can notice that using more producers reduces the waiting 
time of the consumer thread. For all plugins, except the MorseSmale-
Complex plugin and ScalarFieldCriticalPoints plugin on the 
Stent dataset, the waiting time disappears after using 6 producers 
(as indicated by the cyan colored bar in the figure). Overall, the 
speedup plateaus at around 6 producers, after which producers will 
end up competing with the consumer for computing resource (i.e., 
which thread to be scheduled), and the context switching adds 
overhead to the performance. Using 6 threads results in a 4.2 times 
speedup if we consider the extraction of topological relations only 
(TestTopoRelations), and about 1.7 times speedup for all remaining 
plugins. 

Lessons learned. Overall, the results show that multiple producer 
threads can improve the time performance of the plugin, but such 
speedup is limited. For most testing plugins, using 4 producer threads 
shows significant improvements over the single producer. However, 
configuring the number of producer threads to exceed the number of 
physical cores will result in performance degradation. This is expected 
due to issues such as operating system’s scheduling policy, context 
switching, and critical resource competition. 

6.3 Comparing with state-of-the-art 
In this section, we compare our proposed data structure with state-of-
the-art static and dynamic data structures. For static data structure, we 
use ExplicitTriangulation implemented in TTK. This data structure 
precomputes and stores all required topological relations during a pre-
processing stage so that they are readily available during the algorithm 
execution. For dynamic data structure, we use CompactTriangulation, 
an implementation of the dynamic data structure proposed by Liu et 
al. [40]. Similar to ACTOPO, CompactTriangulation organizes the 
mesh using blocks, computes and discards topological relations locally 
to each block. 

The comparison is intended to evaluate the parallelism at the data 
structure level instead of the algorithm level. For this reason, the 
testing algorithms are restricted to the sequential execution. In practice, 
multiple threads are used for initializing the data structures or, in the 
case of ACTOPO, threads are used for supporting the extraction of 
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Fig. 7: The execution time (in seconds) used by TestTopoRelations, ScalarfieldCriticalPoints, and DiscreteGradient plugins when running 
with different computing modes using six producer threads. 

(a) (b) 
Fig. 8: The execution time (in seconds) and memory usage (in 
megabytes) used by MorseSmaleComplex plugin when running with 
different computing modes. 

(a) TestTopoRelations (b) ScalarFieldCriticalPoints 

(c) DiscreteGradient (d) MorseSmaleComplex 
Fig. 9: The total time (in seconds) spent by four testing plugins when 
running with different numbers of producer threads, and the cyan colored 
bar denotes the waiting time of the consumer thread. 

topological relations (6 producers). Instructions implemented by each 
plugin are executed by a single thread (1 consumer for ACTOPO) in a 
sequential manner. 

Since the initialization of each data structure is different, we report 
detailed results about the preprocessing time (steps required to initialize 
the data structure) and the algorithm execution time. For the following 
experiments, we have set the number of threads to 6 for all data 
structures and limited the buffer/cache capacity to 20% of the total 
number of blocks for both our proposed data structure and TTK 
CompactTriangulation. 

Fig. 10 shows the total time and memory consumptions obtained 
with three linear plugins. Focusing on the preprocessing step, we 
notice that our proposed data structure is the second best on average in 
terms of time performance. ExplicitTriangulation is the slowest being 
in general, 2 times as slow as ACTOPO, and CompactTriangulation 
is 4 times as fast as ACTOPO. For the TestTopoRelations plugin 
(Fig. 10(a)), CompactTriangulation shows the worst performance 
instead, underlying the limitation of computing topological relations on-
the-fly while the algorithm is blocked to wait. Our approach provides a 
dramatic improvement and is 5.3 times as fast as CompactTriangulation. 

In the remaining two plugins (Fig. 10(c) and (e)), topological 
relations are used for computing additional information. Producer 
threads used in our approach have enough time to precompute 
topological relations and save time for the consumer. This allows 

ACTOPO to close the gap with ExplicitTriangulation and to show 
roughly the similar performance. The difference with CompactTri-
angulation is still significant, since ACTOPO is 3.4 times as fast as 
CompactTriangulation for ScalarFieldCriticalPoints plugin and 
1.83 times for DiscreteGradient plugin. 

In terms of memory usage, even if CompactTriangulation is the 
most compact data structure in general, ACTOPO shows a very similar 
memory footprint using only 7% more memory on average. As opposed, 
ExplitTriangulation uses about 3 times the memory of our proposed data 
structure. The large memory requirement causes ExplicitTriangulation 
to run out of memory when processing the Stent dataset with Test-
TopoRelations plugin. 

Particular attention is dedicated to the results collected on the 
MorseSmaleComplex plugin, shown in Fig. 11. Since the plugin does 
not simply iterate through the simplices of the mesh, block-based 
data structures like CompactTriangulation are forced to recompute 
topological relations inside a block multiple times with an evident 
loss in performance, especially when handling the input dataset with 
a complicated scalar field, such as Engine, Earthquake, and Foot 
datasets. ACTOPO provides a considerable improvement being 3 
times as fast as CompactTriangulation. However, the unpredictable 
pattern used by the plugin to access blocks makes it harder for the 
producers to predict which block the consumer will move to next. As a 
result, the gap between ACTOPO and ExplicitTriangulation is wider 
with ACTOPO being 2.6 times as slow as ExplicitTriangulation on 
average. Nevertheless, this is paid off by much better scalability in 
terms of memory usage, with ACTOPO being 1.8 times as compact 
as ExplicitTriangulation. As mentioned earlier, the plugin is output-
sensitive, which causes both localized data structures to use the most 
memory when processing the Foot dataset. 

7 SUPPORTING PARALLEL ALGORITHMS 

Parallel computation makes use of multiple processors to execute 
computational tasks simultaneously, thus reducing the total time 
required to complete the task. Various topology-based visualization 
algorithms have implemented different parallel computation techniques, 
and one common approach is the data-parallel technique. In this 
method, data is divided into smaller pieces and processed independently 
by multiple threads. In this section, we describe how ACTOPO supports 
a parallel topological algorithm. 

For static data structures, data-parallel techniques are used to 
parallelize the computation of topological relations, or the selected 
algorithm, independently. For dynamic data structures, data-parallel 
techniques are used to allow multiple threads to process multiple blocks 
at the same time [40]. 

Our proposed ACTOPO data structure can also be adapted to execute 
parallel algorithms. As mentioned previously, the consumer thread is 
the one responsible for running the processing algorithm. When an 
algorithm allows for parallel execution, multiple consumer threads can 
be used to run instructions in parallel. To this end, we have generalized 
our model by duplicating producer-consumer associations. 

Consumer threads are spawned at the initialization phase of the 
ACTOPO. Once created, each consumer thread has its own set of 
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Fig. 10: The total time (in seconds) and memory usage (in megabytes) used by three experimental plugins with different data structures: ACTOPO, 
TTK Compact Triangulation, and TTK Explicit Triangulation when the algorithm runs in sequential. In (a), (c), and (e), the top bar indicates the time 
required by running the algorithm, while the bottom bar indicates the preprocessing time. 

(a) (b) 
Fig. 11: The total time (in seconds) and memory usage (in megabytes) 
used by MorseSmaleComplex plugin when running with different data 
structures: ACTOPO, TTK Compact Triangulation, and TTK Explicit 
Triangulation. 

producers and a dedicated buffer system that is not shared with any 
other consumer/producer threads. Each type of thread behaves in the 
same way as described in Sec. 5, i.e., the consumer thread is responsible 
for the algorithm execution, the worker producer threads precompute 
topological relations and saves them to the buffer storage, and the leader 
producer thread monitors both threads and manages the buffer system. 
The only difference is the exclusive association between consumers 
and producers. 

In the following, we present an evaluation of this producer-consumer 
paradigm when the topological algorithm runs in parallel. We keep only 
three of the four TTK plugins originally selected since MorseSmale-
Complex uses parallelism only for computing the discrete gradient 
(equivalent to the DiscreteGradient plugin), while the extraction of 
the MS cells is done in a sequential manner. 

7.1 Evaluating robustness on parallel algorithms 

When working with a parallel algorithm, the total number of consumer 
and producer threads involved is an important parameter to evaluate. 
The total number of threads used by ACTOPO is tc + tc · tpc, where tc 
indicates the number of consumer threads, tpc indicates the number of 
producer threads per consumer thread, including one leader producer 
and (tpc − 1) worker producers. Thus, each plugin can obtain a relative 
speedup by either increasing tc to distribute the computation across 
more consumer threads, or by increasing tpc to let more worker threads 
precompute topological relations. Since our testing machine can 
support at most 12 threads, we can use at least 2 consumers with 
5 producers each (i.e., tc = 2 and tpc = 5), and at most 6 consumers 
with 1 (leader) producer assigned to each one of them (i.e., tc = 6 and 
tpc = 1). 

Fig. 12 shows the total time and peak memory tracked for three 
testing plugins. We also reuse the results obtained with a single 
consumer thread (sequential computation) in Sec. 6.2.2 as a reference. 

In general, using the maximum number of consumer threads achieves 
the best time performance. Since the memory usages are at a similar 
level (within 3% difference) except the DiscreteGradient plugin 
(within 10% difference), we only discuss the time performance here 
and shared the detailed figures in supplemental materials. 

The TestTopoRelations plugin only extracts the topological 
relations from the mesh without computing any additional information, 
the precomputation from five producer threads helps speed up the 
execution, but it is still on average 5% slower than fully distributing the 
task to consumers. With one more consumer thread, it is 1.7 times as 
fast as the single consumer thread. 

The ScalarFieldCriticalPoints and DiscreteGradient plu-
gins show the advantage of maximizing the number of consumer threads 
over other cases, and it is on average 2.4 times as fast as maximizing 
the number of producer threads for both plugins. 

Lessons learned. If the parallel processing algorithm is intensive 
with topological relations, i.e., the use of topological relations is 
faster than the production, both maximizing the consumer and 
producer threads will speed up the execution. Otherwise, it is 
preferred to increase the number of consumer threads to distribute 
the workload instead of increasing the number of producer threads for 
precomputation. Even though more work producers can reduce the 
waiting time of the consumer, more consumer threads can make the 
algorithm proceed in parallel and thus reduce the total time spent by 
the algorithm. 

7.2 Comparing with state-of-the-art 

In this section, we repeat our comparison with CompacTriangulation 
and ExplicitTriangulation data structures, allowing testing plugins to 
run in parallel. In the following experiments, all data structures use 12 
threads for their initialization (preprocessing). CompacTriangulation 
and ExplicitTriangulation use 12 threads to run the requested algorithm. 
Our data structure uses 6 consumer threads supported by 1 leader 
producer each (i.e., tc = 6 and tpc = 1). 

Fig. 13 shows the total time and peak memory consumption. Notice 
that all algorithms are parallelized in a way that is agnostic to data 
structures (using OpenMP [12]). Specifically, for loops that iterate over 
simplices are split and distributed across threads. This is a challenge for 
block-based data structures like CompacTriangulation and ACTOPO. 
Suppose that the simplices indexed by a block are distributed between 
two threads, topological relations of that block will be computed and 
stored by each thread. 

The resulting loss of performance is clearly visible in the results 
of TestTopoRelations (Fig. 13(a)), where ACTOPO is about 1.2 
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Fig. 12: The total time (in seconds) used by three experimental plugins with different numbers of consumer and producer threads when the algorithm 
runs in parallel with OpenMP. 
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Fig. 13: The total time (in seconds) used by three experimental plugins with different data structures: ACTOPO, TTK Compact Triangulation, and 
TTK Explicit Triangulation when the algorithm runs in parallel with OpenMP. The top bar indicates the time required by running the algorithm, while 
the bottom bar indicates the preprocessing time. 

times as fast as CompactTriangulation but 2.5 times as slow as Explicit-
Triangulation. However, this testing plugin already demonstrates the 
key advantage of block-based data structures, which is to speed up the 
preprocessing stage. During this step, ExplicitTriangulation is about 
2.5 times as slow as ACTOPO. This advantage becomes fundamental 
depending on the topological relations required by the algorithm. For 
real plugins (see Fig. 13(b) and (c)), Explicit Triangulation is always 
the slowest data structure, being 4.8 times as slow as ACTOPO at the 
preprocessing stage and requires 1.6 times to complete the execution 
on average. 

ACTOPO is generally the fastest data structure performing on par 
with CompactTriangulation. Exceptions are the Foot and Stent dataset, 
where CompactTriangulation performs sensibly worse than ACTOPO. 
This is because these two datasets contain many more critical points 
than other datasets, and CompactTriangulation is slower in computing 
boundary vertices than our data structure, as it needs to recompute 
triangle list for the same block multiple times while ACTOPO already 
has those information encoded at initialization time. 

This is an impressive result if we consider that, with ACTOPO, the 
algorithm’s instructions are executed by half the number of threads 
(6 instead of 12). This demonstrates the advantage that a task-
parallel data structure can provide for unstructured mesh processing, 
leading to competitive time performance and efficient memory usage. 
ACTOPO constantly performs on par with CompactTriangulation 
using only 2% more memory for ScalarFieldCriticalPoints and 
TestTopoRelations, and 8% less memory for DiscreteGradient. 
Notably, both data structures are at least 2 times as compact as 
ExplicitTriangulation. Given that using parallel algorithm has very 
limited effects on the peak memory usage, we provide detailed figures 
in supplemental materials. 

8 CONCLUSION 

In this paper, we present a new block-based task-parallel approach that 
integrates a producer-consumer paradigm to improve data structures’ 
performance. A concrete implementation of this approach, called 
Accelerated Clustered Topological (ACTOPO) data structure, was 
also introduced and evaluated. In our experimental evaluation, we 
test ACTOPO in two different scenarios. With sequential algorithms, 

ACTOPO provides a substantial speedup compared to state-of-the-art 
block-based data structures (TopoCluster [40]). It provides timings 
comparable to static data structures (ExplicitTriangulation [53]), using 
only half the memory. With parallel algorithms, ACTOPO maintains its 
compactness while providing the best time performance in most cases, 
when compared to other data structures. 

Limitations. The main limitation of ACTOPO is the spatial 
buffer. Our evaluation has shown that this type of buffer does not 
allow to completely eliminate the waiting time of the consumer 
thread when running the MorseSmaleComplex plugin. Although 
the implementation of spatial buffer helps reduce the overall waiting 
time compared to the linear order, ACTOPO still faces difficulties in 
handling a processing algorithm exhibiting non-linear access patterns. 

The main objective of ACTOPO is to provide an algorithm-agnostic 
interface for mesh processing. One possible direction for our future 
work is to explore learning-based methods to guide the producers in 
selecting the blocks to precompute. This may further reduce the waiting 
time for the consumer thread and result in faster algorithm execution. 
Another direction is to refine the block-based task-parallel model for 
specific algorithms. This will allow the development of new buffering 
strategies tailored to an algorithm’s access patterns. 

SUPPLEMENTAL MATERIALS 

All supplemental materials are available on OSF at https://osf.io/ 
b3d6k/, released under a CC BY 4.0 license. In particular, they include 
(1) Excel files containing the results obtained during experiments, (2) 
pseudocode for computing a representative set of localized topological 
relations with ACTOPO, and (3) figure images geenrated from the 
result data. The source code of ACTOPO data structure, including the 
plugins we used during the experiments, can be found at the same URL, 
released under BSD License. 
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