
Community-based Friend Recommendation
on Flick Dataset

Guoxi Liu

1 Introduction

Social Networking Service (SNS) is an online platform which people use to build social rela-
tions with other people who share similar personal or career interests, activities, backgrounds
or real-life connections.

Flickr is an image and video hosting website, web services, and online community. The
dataset used in the project contains two parts: users and groups. If there is an edge between
two users, it means that these two bloggers are friends; if there is an edge between a user
and a group, it means the user is a member of the group. The whole dataset contains 80,513
users and 195 groups. There are 5,899,882 friendship pairs and 107,741 membership pairs.
The dataset can be downloaded from ASU Social Computing Data Repository [1].

2 Problem

The connections in the social network are not uniformly distributed, which means that the
network can be divided into several communities and there are dense connections in the same
community but sparse connections between different communities [2]. One problem in the
project is to detect the community structure of the Flickr dataset.

Another popular problem in SNS is friend recommendation, which means that the plat-
form should make use of current network structure to help online users finding potential new
friends.

3 Method

3.1 Clustering

The modularity Q of a network is defined as

Q =
1

2m
∗
∑
ij

[Ai,j −
ki ∗ kj

2m
] ∗ δ(Ci, Cj),

where m is the total weights of the edges in the network, ki and kj are the weights of edges
incident to i and j respectively, δ(Ci, Cj) equals to 1 if i and j are in the same community,
and 0 otherwise.

1

http://socialcomputing.asu.edu/datasets/Flickr

The modularity Q measures the strength of division of a network into modules, and thus
an intuitive way for community detection is to maximize this value.

[3] proposed a fast greedy algorithm, that is, we merge two communities that can reach
the maximum modularity in each iteration.

[4] introduced a fast algorithm to maximize the modularity by use the concept of modu-
larity gain ∆Q;

∆Q =
1

2m
(ki,in −

ki
∑

tot

m
),

where ki,in means the sum of the weights of the links from i to nodes in C, and
∑

tot denotes
the sum of weights of the links incident to nodes in C. The algorithm is divided into two
phases that are repeated iteratively. In the first phase, each node will be placed into the
community of one of its neighbors if the gain is maximum.The second phase is to build a
new network whose nodes are the communities found during the first phase.

Label Propagation was another way to detect community structure which was proposed
in [5]. In each iteration, we change the community of each node to its neighbor’s community
which has the maximum sum of edge weights, and stop until there is no change happen.

3.2 Recommendation

The practice of friend recommendation is based on the similarity. If two nodes are quite
”similar”, and there will be a high probability for them to become friends with each other.
The similarity used in the project is defined as:

Similarity(i,j) =
nij√
d(i)d(j)

,

where nij denotes the number of common neighbors of node i and j, d(i) and d(j) are degrees
of node i and j respectively. The similarity is also known as cosine similarity.

Since there are dense connections in the same community, and thus the probability of
becoming friends between two users who are in the same community tends to be higher.

3.3 Measurements

The new graph is created by randomly removing about 5% edges (about 295,000) from the
original graph. This can be done by using shuf -n NUM edges.txt > test-edges.txt in
the terminal, which means randomly select NUM lines from edges.txt and save them to
test-edges.txt.

The clustering algorithms are evaluated by their run time, reached modularity and num-
ber of clusters, whereas the accuracy of recommendation results is calculated as below:

Accuracy(R) =

∑
i∈N δ(R(i),M(i))

|N |
,

where N is the user list for friend recommendation, R(i) is the recommendation list for user
i, M(i) is the missing actual friends of user i, and δ(A,B) = 1 if set A and B have at least
one common element, and δ(A,B) = 0 otherwise.

2

4 How to Run

The whole project is written in C using igraph library [6]. A Makefile is provided in the
project root folder and its source code is shown below.

Makefile source code

CC = gcc

CFLAGS = -Wall -g

project name and header files

PROJECT = flickr

HEADERS = utils.h louvain.h label_propagation.h suggestion.h measurement.h

path relevant with igraph

IGRAPH_INCLUDE_PATH = /home/guoxil/usr/local/include/igraph

IGRAPH_LIB_PATH = /home/guoxil/usr/local/lib

compile: ${PROJECT}.out

${PROJECT}.out: ${PROJECT}.c ${HEADERS}

${CC} ${CFLAGS} -o ${PROJECT}.out ${PROJECT}.c -I${IGRAPH_INCLUDE_PATH}

-L${IGRAPH_LIB_PATH} -ligraph -lm

run: ${PROJECT}.out

@./${PROJECT}.out

clean:

rm *.out

Build Steps:

1. The only things need to be modified in the above Makefile are IGRAPH INCLUDE PATH

and IGRAPH LIB PATH, which are relevant with igraph installation path.

2. After fixing the igraph path issue, just type make or make compile in the terminal.
This will compile the program automatically and then generate an executable file
named flickr.out if no compilation error occurred.

3. Type make run or ./flickr.out in the terminal to run the program. It runs correctly
when it shows ”Flickr” and graph information like below in the terminal.

______ _ _ _

| ___| (_) | |

| |_ | |_ ___| | ___ __

| _| | | |/ __| |/ / '__|

| | | | | (__| <| |

| ||_|___|_|__|

3

The number of nodes in the whole graph is: 80513.

The number of edges in the whole graph is: 5899882.

The number of nodes in the test graph is: 80513.

The number of edges in the test graph is: 5605000.

Run

• Below is the main user interface of the program.

\ \ / / | |

\ \ /\ / /__| | ___ ___ _ __ ___ ___

\ \/ \/ / _ \ |/ __/ _ \| '_ ` _ \ / _ \

\ /\ / __/ | (_| (_) | | | | | | __/

\/ \/ ___|_|______/|_| |_| |_|___|

Please choose the function you want to run:

1. Cluster the test graph using Louvain fast folding.

2. Friends recommendation based on previous clustering results.

3. Measure the quality of prediction.

• Run Clustering

1. Type in 1 and press enter in the terminal when displaying the above interface.

2. Choose the clustering method, where 1 is Louvain fast unfolding method, and 2

is Label Propagation method.

3. Wait about 4 ∼ 20 seconds (it depends on the selected method), the program will
show the number of clusters and save the information to mycommunities.test.

• Run Friend Recommendation

1. Type in 2 and press enter in the terminal when displaying the above interface.

2. Type in the number of randomly selected users for friend recommendation.

3. Type in the filename to save randomly selected user ids, e.g., test-users.test.

4. Type in the filename to save the recommendation results, e.g., predictions.test.

5. Wait some amount of time (usually 4 minutes for doing recommendation for 1000
users and potential friends are selected only from their community) for the pro-
gram to finish recommendation.

• Run Prediction Measurement

1. Type in 3 and press enter in the terminal when displaying the above interface.

2. Type in the filename that contains the user ids, e.g., test-users.test.

3. Type in the filename that contains the recommendation results, e.g., predictions.test.

4. The program will calculate the accuracy based on the provided files.

4

5 Results

5.1 Clustering

Figure 1 shows the clustering results in the last step using Louvain fast unfolding method,
and Table 1 compares three different clustering algorithms, where the label propagation
method runs fastest, and fast greedy uses most time. We can also see that Louvain method
has the highest modularity and moderate size of clusters.

Figure 1: Clustering using Louvain Fast Unfolding

Fast Greedy Louvain Fast Unfolding Label Propagation
Run Time 1948.15 seconds 22.61 seconds 4.81 seconds
Modularity 0.447 0.520 0.419

No. of Clusters 84 18 6

Table 1: Performance of Three Different Clustering Algorithms

5.2 Friend Recommendation

To measure the difference between selecting potential users from the whole network and from
the same community, first we randomly choose some number of users from the test network,
then recommend potential friends for them that have top cosine similarity scores, and finally
use the formula mentioned before to compute the accuracy.

Table 2 and 3 show the results when selecting different number of users and returning
different number of potential users, where we can obtain much higher accuracy if we only
recommend potential friends from the same community.

Randomly select 100 nodes from the test network:

5

Top 10 Top 20 Top 30
Whole network 16% 18% 23%

Only Community 27% 46% 69%

Table 2: Performance of Friend Recommendation 1

Randomly select 1000 nodes from the test network:

Top 10 Top 20 Top 30
Whole network 17.3% 21.5% 23.7%

Only Community 28.2% 43.4% 55.4%

Table 3: Performance of Friend Recommendation 2

6 Future Work

The whole Flickr dataset contains not only the user-user friendship but also the user-group
membership. However, the project only uses the user graph. So we can make use of the
group information to provide better recommendation results in the future, e.g., two users
have a high probability if they both join the same group.

References

[1] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

[2] Mark EJ Newman. Detecting community structure in networks. The European Physical
Journal B, 38(2):321–330, 2004.

[3] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008.

[5] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm
to detect community structures in large-scale networks. Physical review E, 76(3):036106,
2007.

[6] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems, 1695(5):1–9, 2006.

6

	Introduction
	Problem
	Method
	Clustering
	Recommendation
	Measurements

	How to Run
	Results
	Clustering
	Friend Recommendation

	Future Work

